

 Navigation

 	
 index

 	
 next |

 	MozTrap 1.0.0 documentation

Welcome to MozTrap

MozTrap is a test case manager.

Quickstart

MozTrap requires Python [http://www.python.org] 2.6 or 2.7 and MySQL [http://www.mysql.com] 5.1+ with the InnoDB
backend.

These steps assume that you have git [http://git-scm.com], virtualenv [http://www.virtualenv.org], virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/],
and a compilation toolchain available (with the Python [http://www.python.org] and MySQL [http://www.mysql.com] client
development header files), and that you have a local MySQL [http://www.mysql.com] server running
which your shell user has permission to create databases in. See the full
Installation documentation for details and troubleshooting.

	git clone --recursive git://github.com/mozilla/moztrap

	cd moztrap

	mkvirtualenv moztrap

	bin/install-reqs

	echo "CREATE DATABASE moztrap CHARACTER SET utf8" | mysql

	./manage.py syncdb --migrate

	./manage.py create_default_roles

	./manage.py runserver

	Visit http://localhost:8000 in your browser.

Congratulations! If that all worked, you have a functioning instance of MozTrap
for local testing, experimentation, and development.

Please read the Deployment documentation for important security and
other considerations before deploying a public instance of MozTrap.

Contents

	Installation
	Clone the repository

	Install the Python dependencies

	Create a database

	Create the database tables

	Create the default user roles

	Run the development server

	All done!

	Upgrading
	Updating dependencies

	Database migrations

	Development
	Coding standards

	User registration

	Running the tests

	Compass/Sass

	Loading sample data

	Adding or updating a dependency

	Deployment
	Logins

	Vendor library

	Security

	Static assets

	Database performance tweak

	User’s Guide
	Products

	Product Versions

	Test Cases and Suites

	Runs and Results

	Environments

	Teams

	Roles and Permissions

	Working with Lists

	Data Import Formats

	Bulk Test Case Entry Formats

	Frequently Asked Questions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

Installation

Clone the repository

First, clone the MozTrap repository [https://github.com/mozilla/moztrap].

Dependency source distribution tarballs are stored in a git submodule, so you
either need to clone with the --recursive option, or after cloning, from
the root of the clone, run:

git submodule init; git submodule update

If you want to run the latest and greatest code, the default master branch
is what you want. If you want to run a stable release branch, switch to it now:

git checkout 0.8.X

Install the Python dependencies

If you want to run this project in a virtualenv [http://www.virtualenv.org] to isolate it from other
Python projects on your system, create the virtualenv and activate it. Then run
bin/install-reqs to install the dependencies for this project into your
Python environment.

Installing the dependencies requires pip [http://www.pip-installer.org] 1.0 or higher. pip [http://www.pip-installer.org] is
automatically available in a virtualenv [http://www.virtualenv.org]; if not using virtualenv [http://www.virtualenv.org] you may
need to install it yourself.

A few of MozTrap’s dependencies include C code and must be
compiled. These requirements are listed in requirements/compiled.txt. You
can either compile them yourself (the default option) or use pre-compiled
packages provided by your operating system vendor.

Compiling

By default, bin/install-reqs installs all dependencies, including several
that require compilation. This requires that you have a working compilation
toolchain (apt-get install build-essential on Ubuntu, Xcode on OS X). It
also requires the Python development headers (apt-get install python-dev on
Ubuntu) and the MySQL client development headers (apt-get install
libmysqlclient-dev on Ubuntu).

If you are lacking the Python development headers, you will get the error
Python.h: No such file or directory. If you are lacking the MySQL client
development files, you will get an error that mysql_config cannot be found.

Using operating system packages

If you prefer to use pre-compiled operating system vendor packages for the
compiled dependencies, you can avoid the need for the compilation toolchain and
header files. In that case, you need to install MySQLdb [http://pypi.python.org/pypi/python-mysqldb], py-bcrypt [http://pypi.python.org/pypi/py-bcrypt], and
coverage [http://nedbatchelder.com/code/coverage/] (the latter only if you want test coverage data) via operating
system packages (apt-get install python-mysqldb python-bcrypt
python-coverage on Ubuntu).

If using a virtualenv [http://www.virtualenv.org], you need to ensure that it is created with access to
the system packages. In virtualenv [http://www.virtualenv.org] versions prior to 1.7 this was the
default, in recent versions use the --system-site-packages flag when
creating your virtualenv [http://www.virtualenv.org].

Once you have the compiled requirements installed, install the rest of the
requirements using bin/install-reqs pure; this installs only the
pure-Python requirements and doesn’t attempt to compile the compiled
ones. Alternatively, you can skip bin/install-reqs entirely and use the
provided Vendor library.

Create a database

You’ll need a MySQL database. If you have a local MySQL server and your user
has rights to create databases on it, just run this command to create the
database:

echo "CREATE DATABASE moztrap CHARACTER SET utf8" | mysql

(If you are sure that UTF-8 is the default character set for your MySQL server,
you can just run mysqladmin create moztrap instead).

If you get an error here, your shell user may not have permissions to create a
MySQL database. In that case, you’ll need to append -u someuser to the end
of that command, where someuser is a MySQL user who does have permission to
create databases (in many cases -u root will work). If you have to use
-u to create the database, then before going on to step 5 you’ll also need
to create a moztrap/settings/local.py file (copy the sample provided at
moztrap/settings/local.sample.py), and uncomment the DATABASES setting,
changing the USER key to the same username you passed to -u.

Create the database tables

Run ./manage.py syncdb --migrate to install the database tables.

Create the default user roles

This step is not necessary; you can create your own user roles with whatever
sets of permissions you like. But to create a default set of user roles and
permissions, run ./manage.py create_default_roles.

Run the development server

Run ./manage.py runserver to run the local development server. This server
is a development convenience; it’s inefficient and probably insecure and should
not be used in production.

All done!

You can access MozTrap in your browser at http://localhost:8000.

For a production deployment of MozTrap, please read the
Deployment documentation for important security and other
considerations.

For notes on upgrading to a more recent MozTrap, see the
Upgrading documentation.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

Upgrading

To upgrade, simply use git [http://git-scm.com] to pull in the newer code from the GitHub
repository [https://github.com/mozilla/moztrap/] and update the submodules:

git pull
git submodule update

If you are on a stable release branch (e.g. 0.8.X) and you want to update
to a newer release branch (e.g. 0.9.X), make sure you’ve fetched the latest
code on all branches, switch to the branch you want, and update to the correct
version of the submodules for that branch:

git fetch
git checkout 0.9.X
git submodule update

Updating dependencies

Run git submodule update to get the latest version of the dependency
submodules, and then bin/install-reqs to install them into your
environment. Both of these commands are idempotent; there’s no harm in running
them every time, whether there have been any dependency changes or not.

If you are using the Vendor library, bin/install-reqs is not
necessary, the submodule update will get the latest version of the vendored
dependencies.

Database migrations

It’s possible that the changes you pulled in may have included one or more new
database migration scripts. To run any pending migrations:

python manage.py syncdb --migrate

This command is idempotent, so there’s no harm in running it after every
upgrade, whether it’s necessary or not.

Warning

It is possible that a database migration will include the creation of a new
database table. If you’ve commented out the SET storage_engine=InnoDB
init_command in your moztrap/settings/local.py for performance reasons
(see Database performance tweak), you should uncomment it before
running any migrations, to ensure that all new tables are created as
InnoDB tables.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

Development

The Upgrading documentation is also applicable to updating your
development checkout of MozTrap.

Coding standards

See the Coding Standards for help writing code that will maintain a consistent
style and quality with the rest of the codebase.

User registration

MozTrap’s default settings use Django’s “console” email backend to avoid
requiring an SMTP server or sending real emails in development/testing mode. So
when registering a new user, pay attention to your runserver console; this is
where the confirmation email text will appear with the link you need to visit
to activate the new account.

Running the tests

To run the tests, after installing all Python requirements into your
environment:

bin/test

To view test coverage data, load htmlcov/index.html in your browser after
running the tests.

To run just a particular test module, give the dotted path to the module:

bin/test tests.model.core.models.test_product

Give a dotted path to a package to run all tests within that package, including
in submodules:

bin/test tests.model.core

Compass/Sass

MozTrap’s CSS (located in static/css) is generated using Sass [http://sass-lang.com] and
the Compass [http://compass-style.org] framework, with the Susy [http://susy.oddbird.net] grid plugin. Sass source files are
located in sass/.

The generated CSS is included with MozTrap, so Sass and Compass are not
needed to run MozTrap. You only need them if you plan to modify the Sass
sources and re-generate the CSS.

To install the necessary Ruby gems for Compass/Sass development, run
bin/install-gems. Update requirements/gems.txt if newer gems should be
used.

Loading sample data

A JSON fixture of sample data is provided in fixtures/sample_data.json. To
load this fixture, run bin/load-sample-data.

Warning

Loading the sample data will overwrite existing data in your database. Do
not load it if you have data in your database that you care about.

The sample data already includes the default roles, so
there is no need to run a separate command to create them.

The sample data also includes four users, one for each default role. Their
usernames are tester, creator, manager, and admin. All of them have the
password testpw.

Resetting your database

To drop your database and create a fresh one including only the sample data,
run these commands:

Note

If your shell user doesn’t have the MySQL permissions for the first two
commands, you may need to append e.g. -uroot to them.

mysqladmin drop moztrap
echo "CREATE DATABASE moztrap CHARACTER SET utf8" | mysql
python manage.py syncdb --migrate
bin/load-sample-data

If you create a superuser during the course of the syncdb command
(recommended so that you can access the Django admin), the sample data fixture
will not overwrite that superuser.

Regenerating the sample data

The sample data fixture is generated using django-fixture-generator [http://github.com/alex/django-fixture-generator] via
the code in moztrap/model/core/fixture_gen.py,
moztrap/model/environments/fixture_gen.py,
moztrap/model/tags/fixture_gen.py,
moztrap/model/library/fixture_gen.py and
moztrap/model/execution/fixture_gen.py.

If you’ve modified one of the above files, you can regenerate the fixture by
running bin/regenerate-sample-data.

Adding or updating a dependency

Adding a new dependency (or updating an existing one to a newer version)
involves a few steps, since the requirements files and both submodules (the
requirements tarballs submodule in requirements/dist and the Vendor library submodule in requirements/vendor) must be updated.

Preparing your checkout

By default, the submodules are both checked out via a read-only anonymous URL,
so that anyone can check them out. In order to push commits to the submodules,
you’ll need to switch the push url to use ssh. Make this change as follows:

cd requirements/dist
git remote set-url --push origin git@github.com:mozilla/moztrap-reqs

cd ../vendor
git remote set-url --push origin git@github.com:mozilla/moztrap-vendor-lib

This assumes that you have permission to push to the primary
moztrap-reqs and moztrap-vendor-lib repositories. If
instead you have made your own forks of one or both of these repositories,
adjust the above URLs to push to your fork.

Adding the dependency tarball

Assuming the new dependency is a Python package available on PyPI [http://pypi.python.org/pypi/] (for the
sake of this example we’ll assume that we want the 2.1.1 version of the
Markdown package [http://pypi.python.org/pypi/Markdown/2.1.1]), from the root of your MozTrap checkout run this
command in order to download the tarball into requirements/dist:

pip install -d requirements/dist Markdown==2.1.1

This should add the Markdown-2.1.1.tar.gz file into
requirements/dist. We want to add this file and commit the change to the
submodule. First, though, we need to ensure that we are actually committing on
a branch in the submodule, since by default git does not check out submodules
on a branch.

In most cases, you can just check out the master branch of the submodule
and commit there:

cd requirements/dist
git checkout master
git add Markdown-2.1.1.tar.gz
"git rm" the older Markdown tarball, if you're updating
git commit -m "Add Markdown 2.1.1."
git push

Note

If you are working on a release branch of MozTrap rather than the master
branch, you may find that updating the submodule to master updates the
version of some dependency to a more recent version, and your branch of
MozTrap is not prepared for this dependency update. In that case rather than
updating to the submodule’s master branch, you should create a new branch of
the submodule with a name matching the branch of MozTrap you are working on;
replace git checkout master in the above with e.g. git branch
0.8.X. (If you’ve already done the git checkout master, go back out to
the MozTrap repo root and git submodule update to get back to the pinned
commit of the submodule, then cd requirements/dist and git branch
0.8.X.) If you create your own branch of the submodule, you may need to
also replace git push with e.g. git push -u origin 0.8.X).

Similarly, if you are working on a feature branch, and your feature branch
requires a newer version of a dependency, it is preferable to make a branch
of the submodule. The master branch of MozTrap is tied to a specific
commit of the submodule, so it won’t create an immediate problem if you just
push to the submodule’s master branch; but if some other feature on the
master branch must also update a dependency, there could be a problem if
everyone is just pushing to the submodule’s master branch. (If you are just
adding a dependency, not changing the version of an existing one, this
really isn’t an issue, as having the extra tarball around won’t hurt
anything for another branch).

Updating the requirements file

If your added dependency is a pure-Python dependency (no compiled C
extensions), add an entry to requirements/pure.txt like
Markdown==2.1.1.

If your added dependency does require compilation, add it to
requirements/compiled.txt instead.

If you are just updating the version of an existing dependency, find the
existing requirement line and change the version.

Updating the vendor library

Note

This step is only necessary for pure-Python dependencies. Compiled
dependencies should not be included in the vendor library.

Note

Due to a bug in pip, this step currently must be done within an empty
--no-site-packages virtualenv [http://www.virtualenv.org]. (Virtualenv 1.7+ automatically creates
--no-site-packages envs by default; with an earlier version you must use
the --no-site-packages flag).

If you’ve correctly created and activated a -no-site-packages
virtualenv, pip freeze should show only the wsgiref package (which
is part of the Python standard library).

Now, from the root of the MozTrap repo, run:

bin/generate-vendor-lib
cd requirements/vendor
git status

The only changed files shown here should be the new Python files for your added
dependency (or, if upgrading a dependency, possibly some added/modified/removed
files, but nothing outside the one upgraded package).

If that is the case, commit your changes to the master branch (or the branch
you chose earlier) and push using the same steps as shown above for the
requirements/dist submodule.

Pulling it all together

At this point, if you run git status in the root of the MozTrap
repo, you should see three modifications: a modification to
requirements/pure.txt and (new commits) in the requirements/dist
and requirements/vendor submodules (or, if you added a compiled module, a
modification to requirements/compiled.txt and (new commits) only in
requirements/dist).

Add these changes, commit, push, and you’re done!

git add requirements/
git ci -m "Add Markdown 2.1.1 dependency."
git push

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

Deployment

Django’s built-in runserver is not suitable for a production deployment;
use a WSGI-compatible webserver such as Apache [http://httpd.apache.org] with mod_wsgi [http://modwsgi.org], or
gunicorn [http://gunicorn.org]. A WSGI application callable is provided in moztrap/deploy/wsgi.py
in the application object.

You’ll also need to serve the static assets; Apache [http://httpd.apache.org] or nginx [http://nginx.org] can do
this.

You’ll need a functioning SMTP server for sending user registration
confirmation emails; configure the EMAIL_* settings and
DEFAULT_FROM_EMAIL in your moztrap/settings/local.py to the appropriate
values for your server.

The default local-memory cache backend [http://docs.djangoproject.com/en/dev/topics/cache/] is not suitable for use with a
production (multi-process) webserver; you’ll get CSRF errors on login because
the CSRF token won’t be found in the cache. You need an out-of-process cache
backend: memcached or Redis is recommended for production deployment. The
Django file or database cache backends may also work for a small deployment
that is not performance-sensitive. Configure the CACHE_BACKENDS setting in
moztrap/settings/local.py for the cache backend you want to use.

In addition to the notes here, you should read through all comments in
moztrap/settings/local.sample.py and make appropriate adjustments to your
moztrap/settings/local.py before deploying this app into production.

Logins

By default all access to the site requires authentication. If the
ALLOW_ANONYMOUS_ACCESS setting is set to True in
moztrap/settings/local.py, anonymous users will be able to read-only browse the
management and test-results pages (but will not be able to submit test results
or modify anything).

By default MozTrap uses BrowserID [http://browserid.org] for all logins, but it also
supports conventional username/password logins. To switch to username/password
logins, just set USE_BROWSERID to False in moztrap/settings/local.py.

If using BrowserID (the default), you need to make sure that your SITE_URL
is set correctly in moztrap/settings/local.py, or BrowserID logins will not
work.

Vendor library

For deployment scenarios where pip-installing dependencies into a Python
environment (as bin/install-reqs does) is not preferred, a pre-installed
vendor library is provided in requirements/vendor/lib/python. This library
does not include the compiled dependencies listed in
requirements/compiled.txt; these must be installed separately via e.g.
system package managers. The site.addsitedir function should be used to
add the requirements/vendor/lib/python directory to sys.path, to ensure
that .pth files are processed. A WSGI entry-point script is provided in
moztrap/deploy/vendor_wsgi.py that makes the necessary sys.path adjustments,
as well as a version of manage.py in vendor-manage.py.

If you are using the vendor library and you want to run the MozTrap
tests, bin/test won’t work as it uses manage.py. Instead run python
vendor-manage.py test.

If you need code coverage metrics (and you have the coverage module
installed; it isn’t included in the vendor library as it has a compiled
extension), use this:

coverage run vendor-manage.py test
coverage html
firefox htmlcov/index.html

Security

In a production deployment this app should be served exclusively over HTTPS,
since almost all use of the site is authenticated, and serving authenticated
pages over HTTP invites session hijacking attacks. The
SESSION_COOKIE_SECURE setting should be set to True in
moztrap/settings/local.py when the app is being served over HTTPS.

Run python manage.py checksecure on your production deployment to check
that your security settings are correct.

Static assets

This app uses Django’s staticfiles contrib app [http://docs.djangoproject.com/en/dev/howto/static-files/] for collecting static assets
from reusable components into a single directory for production serving, and
uses django-compressor [http://django_compressor.readthedocs.org/en/latest/index.html] to compress and minify them. Follow these steps to
deploy the static assets into production:

	Ensure that COMPRESS_ENABLED and COMPRESS_OFFLINE are both
uncommented and set to True in moztrap/settings/local.py.

	Run python manage.py collectstatic to collect all static assets into the
collected-assets directory (or whatever STATIC_ROOT is set to in
moztrap/settings/local.py).

	Run python manage.py compress to minify and concatenate static assets.

	Make the entire resulting contents of STATIC_ROOT available over HTTP at
the URL STATIC_URL is set to.

If deploying to multiple static assets servers, probably steps 1-3 should be
run once on a deployment or build server, and then the contents of
STATIC_ROOT copied to each web server.

Database performance tweak

In order to ensure that all database tables are created with the InnoDB
storage engine, MozTrap’s default settings file sets the database
driver option “init_command” to “SET storage_engine=InnoDB”. This causes
the SET command to be run on each database connection, which is an
unnecessary slowdown once all tables have been created. Thus, on a
production server, you should comment this option from your
moztrap/settings/local.py file’s DATABASES setting after you’ve run
python manage.py syncdb --migrate to create all tables (uncomment it
before running python manage.py syncdb or python manage.py migrate
after an update to the MozTrap codebase, or before trying to run the
tests).

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

User’s Guide

This guide provides documentation of MozTrap’s underlying concepts and
design decisions.

	Products
	Product Edit Fields

	Product Versions
	Product Version Edit Fields

	Test Cases and Suites
	Test Cases
	Case Edit Fields

	Test Suites
	Suite Edit Fields

	Tags
	Tag Edit Fields

	Attachments

	Runs and Results
	Test Runs
	Cloning Test Runs

	Test Results

	Environments
	Environment Edit Fields
	Auto-generation

	Inheritance

	Select Environments

	Teams

	Roles and Permissions
	Default roles
	Tester

	Test Creator

	Test Manager

	Admin

	Permissions
	execute

	create_cases

	manage_suite_cases

	manage_cases

	manage_suites

	manage_tags

	manage_runs

	review_results

	manage_environments

	manage_products

	manage_user

	Working with Lists
	Filters

	Details

	Data Import Formats
	JSON

	CSV (future)

	Bulk Test Case Entry Formats
	Gherkin-esque

	Markdown (future)

	Frequently Asked Questions

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Products

The core object in MozTrap is the Product. A Product itself is little
more than a name and optional description, but almost every other object in the
MozTrap data model relates to a Product either directly or indirectly.

Products have a list of versions; every
test run and test case version applies
to a particular version of the product.

Product Edit Fields

	Name - The name of the Product. (Firefox, Thunderbird, etc)

	Description - (optional) A brief description of the product.

	Version - Every Product must have at least one Product Version. Many
Products will end up with several Product Versions. (1.0, 2.0, 2.5,
etc). If this is a web project and you don’t want several versions, feel
free to call this whatever you like (Production, Current, etc.).

	Environments - This is a pre-existing collection of environments called
an Environment Profile. You can specify this
at creation time, or later. Note that the set of environments can be
different for different Product Versions because the needs of your product
may change over time. When you want to update the list of supported
environments, you do this on the Product Version rather than the Product
itself.

Product Versions

When a new Product Version is created, all test cases for that Product will
get a new version to match the new Product Version.

For more information on how Test Cases and Product Versions relate while
running tests against different builds of a Product, see the Test Runs section.

Product versions are automatically ordered according to their version
number/name. The version is split into dotted segments, and the segments are
ordered lexicographically (with implicit left-side zero-padding of numerals to
avoid e.g. “2” ordering after “11”). So, for instance, version 1.1 is greater
than version 1.0.3, version 2.0b1 is greater than 2.0a3, and 3.11.1 is
greater than 3.2.0.

There are some special cases to better support common version-numbering
schemes. Strings alphabetically prior to “final” are considered pre-release
versions (thus 2.1a, 2.1alpha, and 2.1b are all prior to 2.1, whereas
2.1g is considered a post-release patchlevel). The strings “rc”, “pre”, and
“preview” are considered equivalent to “c” (thus also pre-release), and the
string “dev” orders before “alpha” and “beta” (so 2.1dev is prior to 2.1a).

Product versions can also optionally have a code name that does not impact
their ordering.

Product Version Edit Fields

	Product - The Product that this is a version of.

	Copy Environments From - (optional) Environments apply to each product
version. Each version can have a unique set of environments. But commonly,
they are very close, and the set of environments evolves over time. This
field allows you to choose which existing product version to copy the
environments from. You can then add or remove from the list of environments
for this version.

	Version - The name of the new version. See
product versions for more info on how order of
versions works.

	Codename - (optional) This can be any text and is only used as a
reference in the summary list of versions when there is another name for a
version. For instance, for Mac OS 10.7, the Codename is Lion.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Test Cases and Suites

Test Cases

A Test Case is a named set of steps for testing a single feature or
characteristic of the system under test. Test cases are associated with a
product, and can have one version per product
version. They can be organized via suites and/or tags, and can have file
attachments. Preconditions, assumptions, and other
preliminary information can be provided in the case’s description. A test
case can have any number of steps; each step has an instruction and an
expected result.

Case Edit Fields

	Product - The product that owns this test case.

	Version - The product version of this test case.

	And Later Versions - Create a test case version for the specified Product
Version as well as a case version for each later Product Version. (e.g.: if
Product Versions 3, 4 and 5 exist for this Product, and you have specified
Product Version 4, this case will be created for versions 4 and 5)

	Suite - (optional) The existing suite to which you want this case to
belong.
You can also add cases to suites later.

	Name - The summary name for the case.

	Description - Any description, pre-conditions, links or notes to
associate with the case. This field is displayed while running the test.
Markdown syntax is supported.

	Add Tags - Enter tags to apply to this case. Hit enter after each tag to
see the tag chicklet displayed. Auto-completes for existing tags.

	Add Attachment - You can attach files to cases that may help running the
test. (e.g: images, audio, video, etc.)

	Instruction / Expected - The test instruction and corresponding expected
result. You can choose to put all instructions / expectations in one step,
or break them down to individual steps. When running the test, you will have
the option to fail on specific steps, so you may find this a better approach.
Markdown syntax is supported.

	Save - You can choose to save the case as draft or active. Only active
cases can be run in a test run.

Test Suites

A Test Suite is a named collection of test cases that can be included in a
test run.

Suite Edit Fields

	Product - The product that owns this test case.

	Name - The name of the suite.

	Description - Any description for the suite.

	Available Cases - Test Cases that have the same Product you selected for this
suite. This list is filterable.

	Included Cases - Test Cases that are included in the Suite. This list is not
filtered.

Tags

A Tag can be associated with one or more test cases as a
way to organize and filter them on any number of axes.

By default, tags are product-specific; global tags can also be
created and managed via the tag management UI.

Tag Edit Fields

	Name - The name of the tag.

	Product - (optional) Tags can be specific to a Product, or they can be
global. If a tag is Product specific, then cases for other products can’t
use it. This is useful if you want to separate tags for different products.

Attachments

A test case can have any number of file attachments: these
will be made available for download by testers when the test case is executed.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Runs and Results

Test Runs

A Test Run consists of a set of test case versions that
can be assigned to a tester for execution (or that a tester can assign to
themselves and execute) in a particular environment or
set of environments.

A test run is for a specific product version. It has its own
name, status, start date, and end date, as well as a list of included
test suites. A test run must be switched to active
status before it can be executed by testers.

A Test Run applies to a Product and a Product Version. Usually, a product has
had several iterations (or builds) prior to the release of a final
Version. Therefore, a Test Run is a single execution pass over a specific
iteration of that Product Version. And your product will likely have more than
one iteration prior to release of that version. Therefore, you may choose to
name your test runs after the build they are testing like Build 23, Build 24,
etc. Once your product goes Alpha or Beta, you may choose to name your test
runs that way: “Alpha 1, Build 86,” “Alpha 1, Build 87,” etc.

The test case steps executed in test runs may be different for each Product
Version, as the Product itself evolves. See Test Cases for
more info on how test case versions relate to Product Versions.

An active test run can be disabled, which halts all execution of tests in that
run until it is made active again.

Cloning Test Runs

If you have a Test Run that you would like to apply to a different Product
Version, you must clone the existing Test Run, then edit the new clone while it
is still in draft mode. Once your changes are made, you can activate the new
run to use it.

Run Edit Fields

	Product Version - The product version of this test run. Runs are
specific to a version of a product, not just the product in general.

	Name - The summary name for the run. When testing a product that has
build numbers, you may choose to include the build number in the name to
distinguish it from other runs against the same version of the product.
Dates in the name are another good way to distinguish runs from one another.

	Description - (optional) Any description for the run.

	Start - The first date that the run can be executed

	End - The date the run expires. A run cannot be executed after its
end date.

	Available Suites - All the suites that apply to the specified Product
Version. This field is filterable.

	Selected Suites - The suites from which to gather test cases for this
run. When the run is activated, only suites and cases that were active at
that time will be included in the run. This field is not filterable.

Test Results

A Test Result stores the results of a single execution of one test
case from a test run, in a particular
environment, by a particular tester.

A result has a status, which can be any of assigned (the test
case/environment is assigned to this tester, but hasn’t been run yet),
started (the tester has started executing the test, but hasn’t yet reported
the result), passed, failed, or invalidated (the test case steps
were incorrect, did not apply, or the tester couldn’t understand them).

The result also tracks the duration of execution (datetime started and
completed), as well as an optional comment from the tester.

A passed/failed/invalidated result can also be recorded for each individual
step in the test case, allowing the tester to specify precisely which step(s)
failed or were invalid. A failed step can have a bug URL associated with it.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Environments

MozTrap allows fine-grained and flexible specification of the
environment(s) in which each test should be run.

An Environment is a collection of environment
elements that together define the conditions for a
single run of a test. For instance, an environment for testing a web
application might consist of a browser, an operating system, and a language; so
one environment might be Firefox 10, OS X, English, and another Internet
Explorer 9, Windows 7, Spanish.

An Environment Element is a single element of a test environment,
e.g. Windows 7 or Firefox 10.

An Environment Category is a category containing several (generally
mutually exclusive) elements. For instance, the Operating System category
might contain the elements OS X 10.5, OS X 10.6, Windows Vista, and
Windows 7.

An Environment Profile is a collection of Environments that
specifies the supported environments for testing a product or type of
product. For instance, a Web Applications environment profile might contain
a set of environments where each one specifies a particular combination of web
browser, operating system, and language.

Environment profiles can be named and maintained independently of any specific
product; these generic profiles can then be used as the initial profile for a
new product. For instance, the generic Web Applications profile described
above could be used as the initial profile for a new web application
product.

Product versions, runs, and
test cases all have their own environment profile; that is,
the set of environments relevant for testing that particular product version,
test run, or test case. These profiles are
inherited.

Environment Edit Fields

	Name - The name of the Environment Profile.
This name is what you’ll see when selecting environments for a
product version.

	Table
	Name - The name of each
environment category. Select the
environment categories you want to include in your profile. You can create
new categories as you need them (see Add a Category below)

	Elements - The environment elements that
exist in this category. You can select all elements from a category,
or specific ones. You can also create new ones, as you need.

	Add a Category - Click this bar to add a new
environment category. Just type the new
category name in the field and hit enter. You can then add elements to it.

	save profile - Clicking this will auto-generate all combinations of the
categories and elements you chose above. You will then be taken to a screen
where you can pare the list of environments down to only the ones you truly
want to have included in the profile. See Auto-generation below for
more info.

Auto-generation

Given a set of environment categories (or
subsets of the elements from each
category) MozTrap can auto-generate an
environment profile containing every possible combination of one element from
each category.

For instance, given the elements Firefox and
Opera in the category Browser and the
elements Windows and OS X in the category Operating System, the
auto-generated profile would contain the Environments Firefox,
Windows; Firefox, OS X; Opera, Windows; and Opera, OS X.

Inheritance

At the highest level, a product version’s environment profile describes the
full set of environments that the product version supports and should be tested
in.

A test run or test case version by default inherits the full environment
profile of its product version, but its profile can be narrowed from the
product version’s profile. For instance, if a particular test case version only
applies to the Windows port of the product, all non-Windows environments could
be eliminated from that test case’s environment profile. Similarly, a test run
could be designated as Esperanto-only, and all non-Esperanto environments would
be removed from its profile (ok, that’s not very likely).

The environment profile of a test case or test run is limited to a subset of
the parent product version’s profile - it doesn’t make sense to write a test
case or execute a test run for a product version on environments the product
version itself does not support.

When a test case is included in a test run, the resulting “executable case”
gets its own environment profile: the intersection of the environment profiles
of the test run and the test case. So, for example, if the above Windows-only
test case were included in an Esperanto-only test run, that case, as executed
in that run, would get an even smaller environment profile containing only
Windows Esperanto environments.

Thus, the inheritance tree for environment profiles looks something like a
diamond:

product-version
 / \
 run case-version
 \ /
executable-case-version

Cascades

Whenever an environment is removed from an object’s profile, that removal
cascades down to all children of that object. So removing an environment from a
product version’s profile also automatically removes it from all test runs and
test cases associated with that product version.

Adding an environment only cascades in certain situations. Adding an
environment to a product version’s profile cascades to test runs only if they
are still in Draft state; once they are activated, their environment profile
can no longer be added to.

Additions to a product version’s environment profile cascade only to those test
cases whose environment profile is still identical to the product version’s
environment profile (i.e. test cases that apply to all environments the product
supports). Once a test case has been narrowed to a subset of the product
version’s full environment profile, additions to the product version’s profile
will have to be manually added to the case’s profile if the new environment
applies to that case.

Test results, once recorded, are never deleted, even if
their corresponding environment is removed from their product version or run’s
environment profile.

Select Environments

This page allows you to narrow the list of environments for a given object.
This can be a product version,
test run, test suite, or
test case. See Inheritance and Cascades above for
a detailed explanation. In this dialog, you can uncheck any environments that
you do not want to apply the version/run/suite/case in question. You can also
add environments back in that may have been previously removed. Just check or
uncheck items to include / exclude them.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Teams

Any product, product version, or
test run can optionally have a Team, which is just a set
of users. Teams are not named or managed as an independent entity; they are
simply a set of users associated with a given product, version, or run.

Teams are inherited by default; any product version without its own team
explicitly set will inherit its product’s team, and any test run without a team
set will inherit its product version’s team. Unlike environment
inheritance, there is no subset requirement - a test
run can be explicitly assigned any team, even if some members of that team are
not part of the product version or product’s team.

When a test run is activated, all team members for that test run will
automatically be assigned all test cases in that run.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Roles and Permissions

Default roles

Four default roles are created when you run python manage.py
create_default_roles: Tester, Test
Creator, Test Manager, and
Admin. These roles can be fully customized, and new ones can
be created (currently only via the Django admin at /admin/).

The default roles have the following permissions:

Tester

	execute

Test Creator

All Tester permissions, plus:

	create_cases

	manage_suite_cases

Test Manager

All Tester and Test Creator
permissions, plus:

	manage_cases

	manage_suites

	manage_tags

	manage_runs

	review_results

	manage_environments

Admin

All Tester, Test Creator and
Test Manager permissions, plus:

	manage_products

	manage_user

Permissions

execute

Can run tests and report the results.

create_cases

Can create new test cases and edit them (but not edit test cases created by
others). Allows tagging of these test cases with existing tags, but not
creation of new tags.

manage_suite_cases

Can add and remove test cases from suites.

manage_cases

Can add, edit, and delete test cases and test case versions.

manage_suites

Can add, edit, and delete test suites.

manage_tags

Can add, edit, and delete tags.

manage_runs

Can add, edit, and delete test runs.

review_results

Can review submitted test results and mark them reviewed.

manage_environments

Can create, edit, and delete environment profiles, categories, elements, and
environments.

manage_products

Can create, edit, and delete products and product versions.

manage_user

Can create, edit, and delete users.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Working with Lists

Much of the navigation in MozTrap is done with lists. When managing
things like Test Cases, it is possible to have a very long
list of items.

Filters

You can use filters to narrow down the size of the list you’re currently
viewing. You can do simple filtering by either clicking certain fields in the
list (like tags or Product Version), or by typing them in the filter field.

Another option is to click the “Advanced Filtering” button to show your filter
options. Simply click the item value you would like to use for filtering. When it
has a check mark next to it, the filter is enabled.

Note

If you have two filters for items of the same type (such as two Tag
filters) then the filters are treated as an OR between them, rather than an
AND. For instance, if you filter on tags “One” and “Two” the list will
reflect items that have EITHER “One” or “Two”, not just ones that have
both.

Details

Notice there is a triangle on the very left of every list item. Click this
triangle to expand and see details about that list item.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Data Import Formats

Note

Imported data should always be UTF-8 encoded.

JSON

JSON is a great way to import more complex sets of cases
and suites for your product. One JSON file will be used
per product version. Simply use the
user interface to create the Product and Version that applies to the cases and
suites to be imported. Then just import your JSON file to
that product version.

Simple Example:

{
 "suites": [
 {
 "name": "suite name",
 "description": "suite description"
 }
],
 "cases": [
 {
 "title": "case title",
 "description": "case description",
 "tags": ["tag1", "tag2", "tag3"],
 "suites": ["suite1 name", "suite2 name", "suite3 name"],
 "created_by": "cdawson@mozilla.com",
 "steps": [
 {
 "instruction": "instruction text",
 "expected": "expected text"
 },
 {
 "instruction": "instruction text",
 "expected": "expected text"
 }
]
 }
]
}

Both top-level sections (“suites” and “cases”) are optional. However, if either
section is included, each item requires a “name” field value. Other than that,
all fields are optional.

CSV (future)

When importing from a spreadsheet or wiki set of test cases, this may prove a
very useful format. This doesn’t handle multiple separate steps in test cases.
Rather, it presumes all steps are in a single step when imported to MozTrap.

Bulk Test Case Entry Formats

Gherkin-esque

This is one of the test case formats supported in the bulk test case creator.

Format:

Test that <test title>
<description text>
When <instruction>
Then <expected result>

Example:

Test that I can write a test
This test tests that a user can write a test
When I execute my first step instruction
then the expected result is observed
And when I execute mysecond step instruction
Then the second step expected result is observed

Markdown (future)

This will be another format for the bulk test case creator.

Example:

Test case 1 title here
======================
Description text here

* which can contain bullets
* **with formatting**
 * indentation
 * [and links](www.example.com)

Steps

1. Step 1 action
 * Step 1 Expected Result
2. Step 2 action
 * Step 2 Expected Result

Test case 2 title here
======================
...

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	
 previous |

 	MozTrap 1.0.0 documentation

 	User’s Guide

Frequently Asked Questions

	Why don’t all of my test cases don’t show up when I execute my test run?

	Your test cases or test suites may
not have been active at the time the test run was made
active. When a test run is made active, it will take a snapshot of active
suites and cases at that time. If cases and suites are made active after
that time, they will not show in that test run: only in newly activated
test runs. This is because once a test run is activated, it is considered a
“unit of work” that won’t be altered.

	When you have activated new test cases and/or suites and want a test run to
reflect that, you have two options:
	clone the existing test run, and activate it.

	mark your existing run draft, then active again.

	Why don’t I see the results I expect when I type in a filter?

	When you type text into the simple search field, you’ll see a drop-down
list showing some possible choices. On the right of that list is the field
to which that filter will be applied. If you filter for the word “Red” in
the product field, but there is no product with the word
“Red” in it, then you may see a list with no results. When you type your
filter word, use the arrow keys to select the field to filter on.

	How can I create a test case with no steps?

	By default, all test cases have steps, and a step has a required field of
instruction. If you try to save the case when there is an empty
instruction, it will say that you must fill out that field. To avoid this,
simply click the “X” next to that step, it will be deleted, and you can
save your case without steps.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 Navigation

 	
 index

 	MozTrap 1.0.0 documentation

Index

 P

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 257

 	PEP 8

 Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.4

 	1.3

 	1.2

 	1.1

 	1.0

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		MozTrap 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.4

 		1.3

 		1.2

 		1.1

 		1.0

_static/comment-close.png

_static/up-pressed.png

standards.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		MozTrap 1.0.0 documentation »

 		Development »

Coding Standards

		Python
		Testing

		Style
		Line length

		Docstrings

		Imports

		Whitespace

		Line continuations

		Comments

		Quotes

		Javascript

Python

Testing

All tests should pass, and 100% line and branch test coverage should be
maintained, at every commit (on the master branch or a release branch;
temporary failing tests or lack of coverage on a feature branch is acceptable,
but the branch should meet these standards before it is merged.)

To check coverage, run bin/test and load htmlcov/index.html in your
browser.

Test methods should set up preconditions for a single action, take that action,
and check the results of that single action (generally, separate these three
blocks in the test method with blank lines). Multiple asserts in a single test
method are acceptable only if they are checking multiple aspects of the result
of a single action (even in that case, multiple test methods may be better
unless the aspects are closely related). Avoid multi-step tests; they should be
broken into separate tests.

Avoid importing the code under test at module level in the test file; instead,
import it in helper methods that are called by the tests that use it. This
ensures that even broken imports cause only the affected tests to fail, rather
than the entire test module.

Prefer helper methods to TestCase.setUp for anything beyond the most basic
setup (e.g. creating a user for authenticated-view tests); this keeps the setup
more explicit in the test, and avoids doing unnecessary setup if not all test
methods require exactly the same setup.

Never use external data fixtures for test data; use the object factories in
tests.factories (available as self.F on every
tests.cases.DBTestCase.) If a large amount of interconnected data is
needed, write helper methods. External data fixtures introduce unnecessary
dependencies between tests and are difficult to maintain.

Style

A consistent coding style helps make code easier to read and maintain. Many of
these rules are a matter of preference and an alternate choice would serve
equally well, but follow them anyway for the sake of consistency within this
codebase.

If in doubt, follow PEP 8 [http://www.python.org/dev/peps/pep-0008], Python’s own style guide.

Line length

Limit all lines to a maximum of 79 characters.

Docstrings

Follow PEP 257 [http://www.python.org/dev/peps/pep-0257]. Every module, class, and method should have a
docstring. Every docstring should begin with a single concise summary line
(that fits within the 79-character limit). If the summary line is the entire
docstring, format it like this:

def get_lib_dir():
 """Return the lib directory path."""

If there are additional explanatory paragraphs, place both the opening and
closing triple-quotes on their own lines. Separate paragraphs with blank lines,
and add an additional blank line before the closing triple quote:

def get_lib_dir():
 """
 Return the lib directory path.

 Checks the ``LIB_DIR`` environment variable and the ``lib-dir`` config
 file option before falling back to the default.

 """

Docstrings should be formatted using reStructuredText [http://docutils.sourceforge.net/rst.html]. This means that
literals should be enclosed in double backticks, and literal blocks indented
and opened with a double colon.

Always use triple double-quotes for enclosing docstrings.

Imports

Outside of test code, prefer module-level imports to imports within a function
or method. If the latter are necessary to avoid circular imports, consider
reorganizing the dependency hierarchy of the modules involved to avoid the
circular dependency.

Module-level imports should all occur at the top of the module, prior to any
other code in the module. The following types of imports should appear in the
following order (omitted if not present), each group of imports separated from
the next by a single blank line:

		Python standard library imports.

		Django core imports.

		Django contrib imports.

		Other third-party module imports.

		Imports from other modules in MozTrap.

Within each group, order imports alphabetically.

For imports from within MozTrap, use explicit relative imports for imports
from the same package or the parent package (i.e. where the explicit
relative import path begins with one or two dots). For more distant
imports, it’s usually more readable to give the full absolute path. Thus,
for code in moztrap.view.manage.runs.views, you could do from .forms
import AddRunForm and from ..cases.forms import AddCaseForm, but it’s
probably better to do from moztrap.view.lists import decorators rather
than fromlists import decorators; more than two dots become
difficult to distinguish visually.

Never use implicit relative imports; if an import does not begin with a dot, it
should be a top-level module. In other words, if models.py is a sibling
module, always from . import models, never just import models.

Whitespace

Use four-space indents. No tabs.

Strip all trailing whitespace. Configure your editor to show trailing
whitespace, or automatically strip it on save. git diff --check will also
warn about trailing whitespace.

Empty lines consisting of only whitespace are also considered “trailing
whitespace”. Empty lines should not be “indented” with trailing whitespace to
match surrounding code indentation.

Separate classes and module-level functions with three blank lines. Separate
class methods with two blank lines. Single blank lines may be used within
functions and methods to logically group lines of code.

Line continuations

Never use backslash line continuations, use Python’s implicit line
continuations within brackets/braces/parentheses. If necessary, prefer
extraneous grouping parentheses to a backslash continuation.

All indents should be exactly four spaces.

The first place to wrap a long line is immediately after the first opening
parenthesis, brace or bracket:

foo.some_long_method_name(
 arg_one, arg_two, arg_three, keyword="arg")

my_dict = {
 "foo": "bar", "boo": "baz"}

my_list_comprehension = [
 x[0] for x in my_list_of_tuples]

If the second line is still too long, each element/argument should be placed on
its own line. All lines should include a trailing comma, and the closing
brace/paren should go on its own line. (This allows easy rearrangement or
addition/removal of items with full-line cut/paste). For example:

foo.some_long_method_name(
 foo=foo_arg,
 bar=bar_arg,
 baz=baz_arg,
 something_else="foo",
)

my_dict = {
 "foo": "bar",
 "boo": "baz",
 "something else": "foo",
 }

my_list_comprehension = [
 x[0] for x in my_list_of_tuples
 if x[1] is not None
]

One exception to the four-space indents rule is when a line continuation occurs
in an if test or another block-opening clause. In this case, indent the
hanging lines eight spaces to avoid visual confusion between the line
continuations and the start of the code block:

if (something and
 something_else and
 something_else_again):
 do_something()

Comments

Code comments should not be used excessively; they require maintenance just as
code (an out-of-date comment is often far worse than no comment at
all). Comments should add information or context or rationale to the code, not
simply restate what the code is doing.

The need for a comment sometimes indicates code that is overly clever or doing
something unexpected. Consider whether the code should be expanded for clarity,
or the API improved so the behavior is less surprising, before adding a
comment.

Use @@@ in a comment to mark code that requires future attention. This
marker should always appear with explanation of why more attention is needed,
or what is missing from the current code.

Quotes

Always use double-quotes for quoting string literals, unless the quoted string
must contain a double-quote character. Quoting such a string with single quotes
is preferable to using backslash escapes in the string.

Javascript

Javascript code should pass JSLint [http://www.jslint.com].

 © Copyright 2012, Mozilla.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.4

 		1.3

 		1.2

 		1.1

 		1.0

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

