

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	MozTrap 1.4 documentation

 [image: _images/126x126.png]

Welcome to MozTrap

MozTrap is a test case manager by Mozilla. We hope you like it.

Useful links

	You can browse around read-only on our staging [https://moztrap.allizom.org/] site

	Or download it from github [https://github.com/mozilla/moztrap/] and run it locally

	Visit our forum [https://groups.google.com/forum/?fromgroups#!forum/moztrap]

	Feel free to ask questions: irc.mozilla.org #moztrap

	If you find any bugs, please enter them in Bugzilla [https://bugzilla.mozilla.org/enter_bug.cgi?component=MozTrap&product=Mozilla%20QA]

Contents

	Release Notes
	Current - 1.4.9.2

	Previous

	User’s Guide
	MozTrap Tutorial

	Indices and tables

	How To Do Some Common Tasks

	Frequently Asked Questions

	Products

	Product Versions

	Test Cases, Suites and Tags

	Runs and Results

	Environments

	Teams

	Roles and Permissions

	REST API

	Filtering

	Working with Lists

	Running Tests

	Data Import Formats

	Bulk Test Case Entry Formats

	Installation
	Quickstart

	Detailed Install

	Install the Python dependencies

	Create a database

	Create the database tables

	Create the default user roles

	Run the development server

	All done!

	Upgrading
	Updating dependencies

	Database migrations

	Development
	Community

	Updating this documentation

	Coding standards

	User registration

	Running the tests

	Compass/Sass

	Loading sample data

	Adding or updating a dependency

	Deployment
	Logins

	Vendor library

	Security

	Static assets

	Database performance tweak

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

Release Notes

Current - 1.4.9.2

Version 1.4.9.2

release date - 12/18/13

	security fixes

	scroll to top when switching page - When in the manage/results list.

Previous

Version 1.4.9

release date - 9/9/13

	Performance optimizations - Went through many of the list screens and
elsewhere and updated the django queries to optimize for performance. Also
added several new db indexes to speed filtering and sorting.

	Travis CI support - Only developers will notice this, but now the unit
tests are run by travis in Github to help us with determining the safety of
a Pull Request.

Version 1.4.8

release date - 8/22/13

	test case priority field - The new field of priority has been added
to test cases. You can set the priority of a case to 1, 2, 3
4 or no priority. You can filter and sort on this field as you can
many other fields. See test cases for more info.

	filtering by tester in results - This allows you to see how many cases
a specific tester has executed overall and for a specific run.

	fix to edit tag dialog - It wasn’t loading the available cases for a
product-specific tag due to a bug.

Version 1.4.7

release date - 5/21/13

	new run results of ``blocked`` and ``skipped`` - Blocked result is for
when a test cannot be executed because it is blocked by functionality that
prevents even starting the test. Skipped result is so that a
test manager can specify that a test in a run should not be tested.
This removes the test from the % complete calculation and can only be set
by a Test Manager or Admin.
See: Result Statuses for more info

	filter lists sorted - The list of items in the advanced filtering are
now sorted for your convenience. Why didn’t we do that before, you ask?
Umm.. oops.

	run progress - The % complete for the test run in that environment now
shows at the top of the page. It doesn’t yet update after each result is
submitted, only on page load for now. This is actually a click-able link
to see the result details.

Version 1.4.6

release date - 5/6/13

	sort on results in runtests - When you are executing a test run, you
can now sort on the results field to help you find the tests that
neither you, nor anyone else has executed yet. Or if filtering descending,
it has the handy side-effect of sorting all failures to the top (since f
comes before p).

	filter by test description - You can now filter by the description field
of a test case. This is handy if you have some specific keywords, urls or
filenames in the description that you need to find.

Version 1.4.5.5

release date - 4/2/13

	Scalability fixes around editing huge test suites

Version 1.4.5

release date - 3/28/2013

	Upgrade to Django 1.4.5

	Bug fix for order of cases - Test case order within suites was broken.

	Bug fix for repeated cases - It was possible, in some circumstances to
have the same test case shown multiple times in a suite.

Version 1.4.4

release date - 3/22/2013

	Link to view result while running test - If you want to share the result
you just found with someone, clicking the result icon (like passed / failed)
will navigate you to the result for that test. You can then share that link
or add it to a bug, etc.

	Case name sync - It ends up that having unique case names for different
versions of the case is confusing. This is especially true when you are
selecting cases for a suite. The screen must show you one of the case names
so it shows you the latest case name. This may not be the one you’re
thinking of if you’re working on an earlier product. So to simplify this,
any time you save a case, it will make all the version of that case the same.

	Several bug fixes - please see Pivotal Tracker [https://www.pivotaltracker.com/projects/280483#] for details.

Version 1.4

release date - 1/22/2013

	Fill Product Version Cases - Added the ability to fill in case versions
when they exist in one product version and not in another. This can be handy
if you have created version 1.0 and 2.0 of your product in MozTrap, and have
been adding new cases to 1.0 as you go. When it’s time for 2.0, you want
all those new cases to get moved forward. In this case, edit the 2.0
Product Version to fill cases from 1.0.
See Fill Case Versions for more info.

	Mass Tag / Untag Cases - If you want to add a new tag to lots of cases,
you previously had to edit each case and add it. Now, if you edit the tag
in question, and select the product for the cases, you will see a list of
available and included cases for that tag. This makes it possible to
merge tags. See Tags for info.

	Filter results by status - You can now filter results cases by passed,
failed or invalidated.

	Page title shows location - You can no see where in the product you are
by the page / tab title.

	other tweaks and bug fixes

Version 1.3.5

release date - 12/19/2012

	Pinned Filters - This feature allows you to pin a filter so that it
remains constant for the session. This way, if you want to only see data
for a particular product then you can pin the filter for it
and everywhere you go, you only see data for that product. For more info,
see pinned filters.

	See test results from other users - There has been an icon while running
tests that indicates that another user has run it, and what that result is.
And with this release, we added the comment from failed or invalid tests to
the rollover text. In addition, this is now a button that will take you to
the results details for that test case. See
Results of others for more info.

	Edit cases while running - If you notice that a case needs updating while
you are running it, there is now an Edit this case link in the upper right
that will open a new tab to edit the contents of the case. See
running tests for more info.

	minor bug fixes - New run series member sets start date to today, rather
than that of the series itself. Creating a case, setting suite adds the case
to the end of the suite order.

Version 1.3.2

release date - 12/18/2012

	Tag Descriptions - You can now add descriptions to tags. The result is
that when you execute tests, the description is displayed for each case
that has that tag. This is a handy way to make notes that apply to a group
of cases, like preconditions, links, etc. As always, Markdown [http://daringfireball.net/projects/markdown/syntax] syntax is
suported. See Tags for more info.

	Fixed refresh run bug - The test run refresh
to get newly added cases was broken. Now fixed.

Version 1.3.1

release date - 12/10/2012

	Display all case versions - Formerly, when you looked at the
manage | cases area, you would only see the latest version of each test
case, unless you were filtering for a different version. This was confusing
to many users, so now you see each distinct case version.

	Delete distinct case versions - Fixed where deleting one case version
deleted all of them.

	Create case no version default - Many users were accidentally creating
new cases for the latest version, when they meant to create it for an earlier
version. Since the default for new cases is the latest version, this went
un-noticed a lot. Removing the default makes it more deliberate.

Version 1.3

release date - 12/03/2012

	Sharable list links - When you have filtered a list somewhere in the
system, you can click the link icon next to the filter field to
bring up the url that you can share to show that list. This link honors
pagination and all filters. And it can be used in the management area
as well as results and in test runs. This can be especially nice if you
want to tell a tester to run a specific set of test cases in a run.
See Sharing Filters for more info.

	Test Run description while running tests - We added the test run
description field to the top of the page while running tests. This
field supports markdown, so you can put links and other instructions to
your testers in there. This can be especially helpful to add links to
creating a new bug in your bugsystem of choice. (You ARE using
Bugzilla, aren’t you?) See Run Edit Fields for
more info.

	Filtering performance - In some screens, the auto-complete filters were
being displayed for every keystroke. Now they always wait till you’re done
typing before showing auto-complete options.

Version 1.2.7

	Run activation scalability - Using some new features in Django 1.4
and a couple raw queries, we expanded support for test runs from ~700
cases to several thousand.

	Update active test runs - The new refresh button in
the management area will update an active run to newly added or removed
test cases. See Refreshing a Run for more
information.

	Case import management command - The feature for importing cases would
prevent you from importing duplicates, even if you wanted to. So added
a param for that. It also accepts a directory of several files instead
of just a single file.

Version 1.2.5

	Django 1.4.2 upgrade

	More non-ascii character fixes - Primarily in some views and messages.

	Split-the-work: When you and others are executing the same test run,
for the same environment, you’ll see an icon on test cases where another
tester has already submitted results. You can still submit your own
result if you choose, but this way you don’t duplicate effort, if you
don’t want to.

Version 1.2

	Test case ordering - As you drag and drop cases in the edit Suite
screen, that order will be honored when users run your tests. Same goes
for suites of test runs. So, the order will be first by suite, then by
case within the suite. There is also a new field in the runtests area
where, if you sorted by case name, you can re-sort by order, if you like.

	Performance fix for editing large suites - Scalability fix as thousands
of cases had been entered into the system.

	Run Series: See Test Run Series for more info on
this new feature.

	Better i18n support - Added more support for non-ascii characters.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

User’s Guide

This guide provides documentation of how to use MozTrap as well as some of
its underlying concepts and design decisions.

New to using MozTrap? See the Tutorial
for an overview of some basic tasks to get you rolling.

If you find an issue with MozTrap, please enter a bug in Bugzilla [https://bugzilla.mozilla.org/enter_bug.cgi?component=MozTrap&product=Mozilla%20QA]

	MozTrap Tutorial
	Contents
	MozTrap Tutorial, part 1

	MozTrap Tutorial, part 2

	Moztrap Tutorial, part 3

	Moztrap Tutorial, part 4

	Moztrap Tutorial, part 5

	Moztrap Tutorial, part 6

	Indices and tables

	How To Do Some Common Tasks
	Create a new Product Version for an existing Product
	Situation

	Steps

	Fill in test cases missing from one Product Version into another
	Situation

	Steps for solution 1

	Result

	Steps for solution 2

	Result

	Migrate a test run to a new Product Version
	Situation

	Steps

	Get a link to a result of a test just after submitting it
	Situation

	Steps for solution 1

	Result

	Frequently Asked Questions

	Products
	Product Edit Fields

	Product Versions
	Fill Case Versions

	Product Version Create Fields

	Fields in both Create and Edit

	Product Version Edit Fields

	Test Cases, Suites and Tags
	Test Cases
	Case Edit Fields

	Test Suites
	Suite Edit Fields

	Tags
	Merging Tags

	Tag Edit Fields

	Attachments

	Runs and Results
	Test Runs
	Test Run Series

	Cloning Test Runs

	Sharing links to Runs

	Refreshing a Run

	Test Results

	Environments
	Environment Edit Fields
	Auto-generation

	Inheritance

	Select Environments

	Teams

	Roles and Permissions
	Default roles
	Tester

	Test Creator

	Test Manager

	Admin

	Permissions
	execute

	create_cases

	manage_suite_cases

	manage_cases

	manage_suites

	manage_tags

	manage_runs

	review_results

	manage_environments

	manage_products

	manage_user

	REST API
	General

	Query Parameters

	Supported Object Types
	Product API

	Test Cases and Suites API

	Test Runs API

	Environment API

	Tags API

	API Keys

	Filtering
	Quick Filtering

	Advanced Filtering

	Sharing Filters

	Pinning Filters

	Working with Lists
	Filters

	Controls
	Details

	Status

	Edit

	Environment

	Clone

	Delete

	Test Run Controls
	Refresh Cases

	Test Suite Controls
	Add Case

	Running Tests
	Result Statuses

	Marking a result

	Results of others

	Updating a test

	Data Import Formats
	JSON

	Importing

	Import command

	CSV (future)

	Bulk Test Case Entry Formats
	Gherkin-esque

	Markdown (future)

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 [image: ../../_images/126x1261.png]

MozTrap Tutorial

This tutorial assumes that your instance of MozTrap has been fully installed
and that you are a user with the role of Admin.

Note

This tutorial is a work in progress and is, as yet, incomplete.

Contents

	MozTrap Tutorial, part 1
	Setup Environments

	Create a Product

	MozTrap Tutorial, part 2
	Create test Suites

	Create test Cases

	Moztrap Tutorial, part 3
	Create a Test Run

	Activate your Run

	Moztrap Tutorial, part 4
	Start Testing

	Pass a Test

	Fail a Test

	Moztrap Tutorial, part 5
	View Results

	Moztrap Tutorial, part 6
	Create New Version

	Migrate Runs

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	MozTrap Tutorial

MozTrap Tutorial, part 1

The following is a description of how to setup your new system to test your
product. Part 1 will focus on setting up your Product and Environments.

Setup Environments

Odds are you will be testing your product in several
environments. These could be a collection of hardware
devices, web browsers, operating systems, or even spoken languages.
You want to be sure to have appropriate coverage so that
you can ensure quality in the environments your product will be used.

For this we have Environment Profiles.

It’s a good idea to familiarize yourself with the pieces that make up
an environment, so consider reading environments
before continuing.

To create a new environment profile customized to your needs, follow these
steps:

	
	Navigate to manage | environments:

	
	[image: manage_environments]

	Click create a profile.

	Give your profile the name Speck Envs.

	
Note

Depending on your setup, you may have several
environment elements in your system already.

If you see a category that applies to your product already, then expand
It to choose the elements that apply. If not, then click [image: add_category]
to create a new one.

	In our case, we’ll need to create everything, so click [image: add_category]
and type location and hit enter.

	In the category, find the field that says [image: add_element] and type
laboratory and hit “enter”.

	Add another element called field and hit enter.

	Make sure to select the location category checkbox and all its elements.

	Click save profile.

Note

This will create a matrix list of all possible combinations of the
environment elements for each category you chose. In our case it’s very
simple (only 2). However, for other products, you may have several
categories. It may be true that you don’t want to test ALL combinations
that were created. If that’s the case, then you can winnow down the list
to test.

To winnow down the list of environments to test:

	Click the edit [image: edit_icon] icon next to your environment profile.

	Exclude any environment by clicking the X next to it.

	Click done editing.

Create a Product

Now that you have your environment profile setup, let’s create your product.
We will presume your product is called SpeckDetector.
It detects specks. Very handy.

	
	Navigate to manage | products:

	
	[image: manage_products]

	Click create a product.

	Fill out the name and description.

	Set version to 1.0. see Product Versions
for more info on how version naming works.

	Set the environment to the environment profile you created earlier. Or
you can optionally leave it blank and add them later.

	Click save.

	You now have a product and version!

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	MozTrap Tutorial

MozTrap Tutorial, part 2

In this section, we discuss creating test cases and organizing them into
suites.

Create test Suites

Test Suites are collections of test cases. A test case can belong to more
than one suite, if need be.

Let’s write some tests to cover two areas of the SpeckDetector. It should
detect specks of sand and specks of pollen. And you should also be able to
update your SpeckDetector’s firmware.

Steps

	Navigate to manage | suites.

	Click create a test suite.

	Set your product to SpeckDetector.

	Set name to Specks.

	Enter a description that includes Markdown [http://daringfireball.net/projects/markdown/syntax] syntax:

PRECONDITIONS
=============
* Must have some specks

LINKS
=====
* [Specks of Life](http://example.com/)

	You won’t have any available cases yet, so skip that and just
click save suite.

	Repeat these steps for a suite but name it Firmware.

Create test Cases

Now we need to create some test cases for those suites.

Steps

	Navigate to manage | cases.

	Click create a test case.

	Set your product to SpeckDetector.

	Set version to 1.0.

	Set suite to Specks.

	ID Prefix is optional, skip it for now.

	Set name to Detect a pollen speck.

	For instruction 1, enter:

hold detector held away from pollen

	For expected 1, enter:

no detection lights

	Tab to instruction 2, enter:

hold detector above a pollen speck

	Tab to expected 2, enter:

detector lights up word "pollen"

	Click save test case.

That’s one down. Whew! OK, now create another test case for the firmware
suite with steps like this:

	Name: update firmware.

	For instruction 1, enter:

navigate to firmware update screen and select "update"

	For expected 1, enter:

see "a firmware update is available"

	Tab to instruction 2, enter:

click "apply update"

	Tab to expected 2, enter:

firmware value should say the new version

Great! You’re done with your cases!

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	MozTrap Tutorial

Moztrap Tutorial, part 3

In this section, we use the pieces you’ve already built to create and activate
a test run that users can execute.

Create a Test Run

Test Runs are made up of test suites and are specific to a version of your
product. You may want to have several test runs. One could be called
smoke and another feature complete and yet another
full functional tests. Or you could break them up into larger functional
areas like front-end and server.

Let’s create your first SpeckDetector test run. It will contain all the
suites you have created so far. Let’s call this feature complete.

Steps

	Navigate to manage | runs.

	Click create a test run.

	Set your product version to SpeckDetector 1.0.

	Set name to feature complete.

	Enter a description that includes Markdown [http://daringfireball.net/projects/markdown/syntax] syntax. This information
will be displayed at the top of each page while running the tests:

LINKS
=====
* [Specks of Life](http://example.com/)
* [Bugzilla](http://bugzilla.mycompany.com)

	series defaults to true. We will want to run
our tests against several ongoing builds of the SpeckDetector, so
in our case we will create a series. Please take a moment to see
what a run series is.

	Leave the start date as today. If you want the run to expire, then
set the end date, too.

	Drag both suites from available to included.

	Click save run.

Activate your Run

Your run is just about ready. However, there’s one more critical step you
must take before it can be executed. You must make the run active.

Why not have test runs active all the time? Good question.
Look here, Curious George.

Steps

	Navigate to manage | runs.

	Find your test run feature complete.

	
	Click the status icon.

	
	[image: run_activate]

	Click “Activate”.

Isn’t this exciting? You now have a test run series created and ready to go!
Go tell your boss.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	MozTrap Tutorial

Moztrap Tutorial, part 4

You have now built all the parts you need to start testing your product.
Allons-y! (Let’s go!)

Start Testing

There are a few ways to get to your test run to execute it.

Run Tests Steps

	Navigate to run tests.

	In the finder, click SpeckDetector.

	Click 1.0.

	Click feature complete.

	This is a run series so you will be asked to enter
a build. Let’s pretend this is your 5th feature complete build.
Here type: FC-5

	Set location to field.

	Click run tests in feature complete.

Manage Runs Steps

	Navigate to manage | runs.

	Find the feature complete run.

	Expand the arrow on the left to display the details of that run.

	Click the green button that says run tests in feature complete.

	
Note

if you want to send this URL to your testers in an email, then just
right-click that same button and select copy link location.

	Specify your environment, as above.

“I got a URL!” Steps

	If somebody gave you a URL to their run or run series, then click on it.

	Specify your environment, as above.

Pass a Test

Some tests pass, some fail. This is the way of the world. Let’s pass this
one.

	Click the title or expansion arrow of update firmware.

	Click pass test.

	That was easy.

Fail a Test

	Click the title or expansion arrow of Detect a pollen speck.

	Click fail test next to the first step.

	You must provide some explanation for the failure:

We applied the cortical electrodes but were
unable to get a neural reaction from the
pollen speck.

	Specifying a bug URL is optional, but it’s a good idea. I’ll leave
that up to you.

You’re done with the run! This is fantastic! If only those kids from High
School could see you now!

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	MozTrap Tutorial

Moztrap Tutorial, part 5

View Results

Coming soon!

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	MozTrap Tutorial

Moztrap Tutorial, part 6

Create New Version

Now let’s say that you shipped version 1.0 and are ready to start testing
version 2.0 of the SpeckDetector.

Steps

	Navigate to Manage | Versions.

	Click the “create a version” button.

	Set the product to the SpeckDetector.

	Specify the version to copy Environments and Cases from. In our case,
this will be 1.0.

	Type in the name of the new Version. In our case: 2.0.

	Codename is optional.

	Click the “save productversion” button.

Result

Now you will have a new product version, and a new 2.0 version of each test
case. If you change the 2.0 version of a case, the 1.0 version remains
unchanged. This is so that the steps in your test can evolve as your product
does without changing the tests that applied to earlier versions.

Migrate Runs

Test runs are specific to a version of your product. But you can easily
make copies of runs from one to the other.

Steps

	Navigate to Manage | Runs.

	Find the test run you want to use in 2.0.

	Click the clone button for that run.

	The new run will have the name “Cloned: foo” and be in DRAFT mode.

	Edit the newly cloned run. Note: It must be in DRAFT mode to change
the product version field.

	Update the name as you wish.

	
	Change the Product Version field to the new version 2.0:

	
	[image: product_version]

	Save as status active, or...

	Activate the new run with the status drop-down.

Result

Now you will have a new run that applies to your new product version 2.0
that is ready to be executed.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

How To Do Some Common Tasks

	Create a new Product Version for an existing Product

	Fill in test cases missing from one Product Version into another

	Migrate a test run to a new Product Version

	Get a link to a result of a test just after submitting it

Create a new Product Version for an existing Product

Situation

You have an existing Product, Version 1.0 along with
test cases, suites, etc. Now you want to start testing version 2.0 of
that same product. See Product Versions for more info
on the fields in that screen.

Steps

See Tutorial: New Version

Fill in test cases missing from one Product Version into another

Situation

You have a 1.0 version of your product, and you created a 2.0
version as well. Then later, you added some new test cases to 1.0 and want to
make sure those get included for testing in 2.0.

There are two situation variants, with different solutions:

	You only have a couple cases you want ported to 2.0. And/or you have
some cases in 1.0 that you do not want ported to 2.0.

	You have lots of new cases in 1.0 and want them all ported to 2.0.

Steps for solution 1

	navigate to Manage | Cases

	filter as appropriate to find the cases you want to port over to 2.0

	edit one of the cases

	In the upper right corner of the edit page, find the drop-down beneath
the select environments button that shows the current version 1.0 of
the test case.

	as you hover your mouse over the 1.0 version, the field will drop-down
and you’ll see an option that says: + 2.0 (add this version)

	Select that option

	click save test case

	edit the next test case to port and repeat the steps to add the 2.0
version.

Result

You will see new 2.0 versions of each test case you edited.

Steps for solution 2

	navigate to Manage | Versions

	edit your 2.0 (destination) version. Note: You can fill cases from
2.0 back to 1.0, if you like, too. Just edit the version that is your
destination.

	set the Fill Cases From field to the product version to fill from.

	click save productversion

Result

All test cases in 1.0 now have a 2.0 version. If a 2.0 version already existed
for a case, it will NOT replace it.

Migrate a test run to a new Product Version

Situation

You have an existing Product, Version 1.0 along with
test cases, suites, runs, etc. You created version 2.0 of the product and
want to run some of the same test runs against from 1.0 against 2.0. You
will need to clone the 1.0 test runs to 2.0 and update them.

Steps

See Tutorial: Migrate Runs

Get a link to a result of a test just after submitting it

Situation

You are executing a test run and find a bug. You want to submit the bug, and
then provide a link to the result in your bug report. Or perhaps you just want
to email that link to someone.

Steps for solution 1

	run the test run

	mark the case with the result you found

	
	If, for example, the case was marked “Failed,” then click the red button that says:

	
	[image: case_result]

Result

You are taken to the result for that test case. You will also see any result
that other users have submitted for the same case in that environment.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Frequently Asked Questions

	Why don’t all of my test cases don’t show up when I execute my test run?

	Your test cases or test suites may
not have been active at the time the test run was made
active.

	When you have activated new test cases and/or suites and want a test run to
reflect that, simply find the run in the management area and click the
refresh button next to it. See Refreshing a Run
for more info.

	Why don’t I see the results I expect when I type in a filter?

	When you type text into the simple search field, you’ll see a drop-down
list showing some possible choices. On the right of that list is the field
to which that filter will be applied. If you filter for the word “Red” in
the product field, but there is no product with the word
“Red” in it, then you may see a list with no results. When you type your
filter word, use the arrow keys to select the field to filter on.

	How can I create a test case with no steps?

	By default, all test cases have steps, and a step has a required field of
instruction. If you try to save the case when there is an empty
instruction, it will say that you must fill out that field. To avoid this,
simply click the “X” next to that step, it will be deleted, and you can
save your case without steps.

	Please help us add more to the FAQ!

	New FAQ items help everyone. Your contributions help!

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Products

The core object in MozTrap is the Product. A Product itself is little
more than a name and optional description, but almost every other object in the
MozTrap data model relates to a Product either directly or indirectly.

Products have a list of versions; every
test run and test case version applies
to a particular version of the product.

Product Edit Fields

	Name - The name of the Product. (Firefox, Thunderbird, etc)

	Description - (optional) A brief description of the product.

	Version - Every Product must have at least one Product Version. Many
Products will end up with several Product Versions. (1.0, 2.0, 2.5,
etc). If this is a web project and you don’t want several versions, feel
free to call this whatever you like (Production, Current, etc.).

	Environments - This is a pre-existing collection of environments called
an Environment Profile. You can specify this
at creation time, or later. Note that the set of environments can be
different for different Product Versions because the needs of your product
may change over time. When you want to update the list of supported
environments, you do this on the Product Version rather than the Product
itself.

Product Versions

When a new Product Version is created, all test cases for that Product will
get a new version to match the new Product Version.

For more information on how Test Cases and Product Versions relate while
running tests against different builds of a Product, see the Test Runs section.

Product versions are automatically ordered according to their version
number/name. The version is split into dotted segments, and the segments are
ordered lexicographically (with implicit left-side zero-padding of numerals to
avoid e.g. “2” ordering after “11”). So, for instance, version 1.1 is greater
than version 1.0.3, version 2.0b1 is greater than 2.0a3, and 3.11.1 is
greater than 3.2.0.

There are some special cases to better support common version-numbering
schemes. Strings alphabetically prior to “final” are considered pre-release
versions (thus 2.1a, 2.1alpha, and 2.1b are all prior to 2.1, whereas
2.1g is considered a post-release patchlevel). The strings “rc”, “pre”, and
“preview” are considered equivalent to “c” (thus also pre-release), and the
string “dev” orders before “alpha” and “beta” (so 2.1dev is prior to 2.1a).

Product versions can also optionally have a code name that does not impact
their ordering.

Fill Case Versions

Test cases have a version for each Product Version.
If you have multiple product versions, it is possible to have a version of a
case for one product version and not for another. For example, given:

	Product Foo
	Version 1.0

	Version 2.0

	Case A
	Case A, Version 1.0

You can see here that you have a version of the Case A for
Product Foo Version 1.0, but not for Version 2.0. With a large
project, you may find yourself with hundreds of cases where you created them
for Version 1.0 and not for 2.0.

If you want to create those versions, you have 2 options:

	If you only have a few, you can edit the case in question, and in the upper
right of the dialog, click the version field and select
+2.0 (add this version)

	Edit the product version and specify the other version in the
Fill Cases From field.

Product Version Create Fields

	Product - The Product that this is a version of.

	Copy Environments and Cases From - (optional) Environments
apply to each product version. Each version can have a unique set of
environments. But commonly, they are very close, and the set of environments
evolves over time. This field allows you to choose which existing product
version to copy the environments from. You can then add or remove from the
list of environments for this version.

Fields in both Create and Edit

	Version - The name of the new version. See
product versions for more info on how order of
versions works.

	Codename - (optional) This can be any text and is only used as a
reference in the summary list of versions when there is another name for a
version. For instance, for Mac OS 10.7, the Codename is Lion.

Product Version Edit Fields

	Fill Cases From - (optional) The product version to copy cases
from if they don’t exist for this product version yet. See
Fill Case Versions.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Test Cases, Suites and Tags

Test Cases

A Test Case is a named set of steps for testing a single feature or
characteristic of the system under test. Test cases are associated with a
product, and can have one version per product
version. They can be organized via suites and/or tags, and can have file
attachments. Preconditions, assumptions, and other
preliminary information can be provided in the case’s description. A test
case can have any number of steps; each step has an instruction and an
expected result.

Case Edit Fields

	Product - The product that owns this test case.

	Version - The product version of this test case.

	And Later Versions - Create a test case version for the specified Product
Version as well as a case version for each later Product Version. (e.g.: if
Product Versions 3, 4 and 5 exist for this Product, and you have specified
Product Version 4, this case will be created for versions 4 and 5)

	Suite - (optional) The existing suite to which you want this case to
belong.
You can also add cases to suites later.

	ID Prefix - (optional) A string that will be displayed as part of the
case ID. This can be a component name, or any string that is pertinent.
This is also supported when filtering by ID. You can filter by the prefix
only, by the ID, or by the prefix-ID combination.

	Name - The summary name for the case.

	Description - Any description, pre-conditions, links or notes to
associate with the case. This field is displayed while running the test.
Markdown [http://daringfireball.net/projects/markdown/syntax] syntax is supported.

	Priority - The priority of the test case. Set a case as priority 1
to indicate it is the highest priority. This can be anywhere from no
priority, or from 1 through 4. This is the same across all versions of the
case. You can filter and sort by this field when running or managing
cases. You can also filter by this when selecting which cases to include
in a suite.

	Add Tags - Enter tags to apply to this case. Hit enter after each tag to
see the tag chicklet displayed. Auto-completes for existing tags. During
test execution, cases that have tags will show the tag descriptions with
with each case.

	Add Attachment - You can attach files to cases that may help running the
test. (e.g: images, audio, video, etc.)

	Instruction / Expected - The test instruction and corresponding expected
result. You can choose to put all instructions / expectations in one step,
or break them down to individual steps. When running the test, you will have
the option to fail on specific steps, so you may find this a better approach.
Markdown syntax is supported.

	Save - You can choose to save the case as draft or active. Only active
cases can be run in a test run.

Test Suites

A Test Suite is a named collection of test cases that can be included in a
test run.

Suite Edit Fields

	Product - The product that owns this test case.

	Name - The name of the suite.

	Description - Any description for the suite.

	Available Cases - Test Cases that have the same Product you selected for this
suite. This list is filterable.

	Included Cases - Test Cases that are included in the Suite. This list is not
filtered.

Tags

A Tag can be associated with one or more test cases as a
way to organize and filter them on any number of axes.

By default, tags are product-specific; global tags can also be
created and managed via the tag management UI.

Merging Tags

The edit screen for tags is a great way to merge two tags into one. For
example, if you wanted to merge TagA and TagB all into TagB, then simply:

	Edit TagB

	In the list of available cases, filter on TagA

	Select all the available cases and click the green add button

	Save TagB

	Delete TagA

Tag Edit Fields

	Name - The name of the tag.

	Product - (optional) Tags can be specific to a Product, or they can be
global. If a tag is Product specific, then cases for other products can’t
use it. This is useful if you want to separate tags for different products.

	Description - (optional) This description will be displayed during test
execution before the test case description and steps. This is useful to
provide some setup or precondition code that doesn’t have to be
repeated for a group of cases. Supports Markdown [http://daringfireball.net/projects/markdown/syntax] syntax.

	Available Cases - Test Cases that have the same Product you selected for
this tag. This list is filterable.

	Included Cases - Test Cases that have this tag applied. This list is not
filtered.

Attachments

A test case can have any number of file attachments: these
will be made available for download by testers when the test case is executed.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Runs and Results

Test Runs

A Test Run consists of a set of test case versions that
can be assigned to a tester for execution (or that a tester can assign to
themselves and execute) in a particular environment or
set of environments.

A test run is for a specific product version. It has its own
name, status, start date, and end date, as well as a list of included
test suites. A test run must be switched to active
status before it can be executed by testers.

A Test Run applies to a Product and a Product Version. Usually, a product has
had several iterations (or builds) prior to the release of a final
Version. Therefore, a Test Run is a single execution pass over a specific
iteration of that Product Version. And your product will likely have more than
one iteration prior to release of that version. For this purpose, you may
want to make a Test Run that is a Series.

The test case steps executed in test runs may be different for each Product
Version, as the Product itself evolves. See Test Cases for
more info on how test case versions relate to Product Versions.

Draft test runs cannot be executed yet. This is a good state if you’re still
working on it and aren’t ready for people to see it. It won’t show up in the
list of test runs for your product in the Run Tests section.

An active test run can be disabled or made draft, which halts all
execution of tests in that run until it is made active again.

Test Run Series

A Test Run can be marked as a series of runs, by checking the “Is Series”
box. You define the run just as you would any other run by specifying the
product version and suites. The difference is that, this
Series run is now just a template used for each build of your product to
be tested.

When you execute a run that is a series, you will be prompted for your
environment options, like always. But you will also be asked for a build id.
If there is already a member of this series that has that build id, then you
will begin testing it. If, however, no one has run this series on that build
yet, then a new member of the series will be created and you will start
testing it. The name of this new member of the series will contain the build
id you specified. For instance, with a run series called “Smoketest,”
specifying a build of “Alpha1” will result in a new member of the series
named “Smoketest - Build: Alpha1” with distinct results from any other member
in the series.

When viewing the list of runs in the manage or results lists, you can then
filter to see only runs that belong to a specific series.

Cloning Test Runs

If you have a Test Run that you would like to apply to a different Product
Version, you must clone the existing Test Run, then edit the new clone while it
is still in draft mode. Once your changes are made, you can activate the new
run to use it.

Sharing links to Runs

Often you might create a run or run series and want to send a link to your
testers asking them to execute it in their own testing environment. This also
works great for a run series. To get this link,
expand the details for your run in the manage runs area. You’ll see a big
green button saying run tests in <yourrunname>. Just right-click and copy
that url location to share.

Run Edit Fields

	Product Version - The product version of this test run. Runs are
specific to a version of a product, not just the product in general.

	Name - The summary name for the run. When testing a product that has
build numbers, you may choose to include the build number in the name to
distinguish it from other runs against the same version of the product.
Dates in the name are another good way to distinguish runs from one another.

	Series - (optional) Whether or not this run is a
series of runs. Default to True.

	Description - (optional) Any description for the run. This description
is displayed in the management details area as well as at the top of the
page while executing a run. Description text supports Markdown [http://daringfireball.net/projects/markdown/syntax] syntax which
could include links to things like entering a new bug in one or more areas or
extra info for your testers.

	Start - The first date that the run can be executed

	End - The date the run expires. A run cannot be executed after its
end date.

	Available Suites - All the suites that apply to the specified Product
Version. This field is filterable.

	Selected Suites - The suites from which to gather test cases for this
run. When the run is activated, only suites and cases that were active at
that time will be included in the run. This field is not filterable.

Refreshing a Run

When a test run is made active, it will take a snapshot of active
suites and cases at that time. If cases and suites are added, removed or had
their active status changed since the run was made active, the run won’t
appear changed to testers. This is because once a test run is activated, it
is considered a unit of work that you may not want to alter while testers
are executing the run.

If, however, you want to refresh the run with the new list of active cases
and suites, then you can click the refresh button in the management area
next to your run. This won’t affect existing results unless you have removed
a case from one of the run’s suites.

Test Results

A Test Result stores the results of a single execution of one test
case from a test run, in a particular
environment, by a particular tester.

A result has a status, which can be any of assigned (the test
case/environment is assigned to this tester, but hasn’t been run yet),
started (the tester has started executing the test, but hasn’t yet reported
the result), passed, failed, or invalidated (the test case steps
were incorrect, did not apply, or the tester couldn’t understand them).

The result also tracks the duration of execution (datetime started and
completed), as well as an optional comment from the tester.

A passed/failed/invalidated result can also be recorded for each individual
step in the test case, allowing the tester to specify precisely which step(s)
failed or were invalid. A failed step can have a bug URL associated with it.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Environments

MozTrap allows fine-grained and flexible specification of the
environment(s) in which each test should be run.

An Environment is a collection of environment
elements that together define the conditions for a
single run of a test. For instance, an environment for testing a web
application might consist of a browser, an operating system, and a language; so
one environment might be Firefox 10, OS X, English, and another Internet
Explorer 9, Windows 7, Spanish.

An Environment Element is a single element of a test environment,
e.g. Windows 7 or Firefox 10.

An Environment Category is a category containing several (generally
mutually exclusive) elements. For instance, the Operating System category
might contain the elements OS X 10.5, OS X 10.6, Windows Vista, and
Windows 7.

An Environment Profile is a collection of Environments that
specifies the supported environments for testing a product or type of
product. For instance, a Web Applications environment profile might contain
a set of environments where each one specifies a particular combination of web
browser, operating system, and language.

Environment profiles can be named and maintained independently of any specific
product; these generic profiles can then be used as the initial profile for a
new product. For instance, the generic Web Applications profile described
above could be used as the initial profile for a new web application
product.

Product versions, runs, and
test cases all have their own environment profile; that is,
the set of environments relevant for testing that particular product version,
test run, or test case. These profiles are
inherited.

Environment Edit Fields

	Name - The name of the Environment Profile.
This name is what you’ll see when selecting environments for a
product version.

	Table
	Name - The name of each
environment category. Select the
environment categories you want to include in your profile. You can create
new categories as you need them (see Add a Category below)

	Elements - The environment elements that
exist in this category. You can select all elements from a category,
or specific ones. You can also create new ones, as you need.

	Add a Category - Click this bar to add a new
environment category. Just type the new
category name in the field and hit enter. You can then add elements to it.

	save profile - Clicking this will auto-generate all combinations of the
categories and elements you chose above. You will then be taken to a screen
where you can pare the list of environments down to only the ones you truly
want to have included in the profile. See Auto-generation below for
more info.

Auto-generation

Given a set of environment categories (or
subsets of the elements from each
category) MozTrap can auto-generate an
environment profile containing every possible combination of one element from
each category.

For instance, given the elements Firefox and
Opera in the category Browser and the
elements Windows and OS X in the category Operating System, the
auto-generated profile would contain the Environments Firefox,
Windows; Firefox, OS X; Opera, Windows; and Opera, OS X.

Inheritance

At the highest level, a product version’s environment profile describes the
full set of environments that the product version supports and should be tested
in.

A test run or test case version by default inherits the full environment
profile of its product version, but its profile can be narrowed from the
product version’s profile. For instance, if a particular test case version only
applies to the Windows port of the product, all non-Windows environments could
be eliminated from that test case’s environment profile. Similarly, a test run
could be designated as Esperanto-only, and all non-Esperanto environments would
be removed from its profile (ok, that’s not very likely).

The environment profile of a test case or test run is limited to a subset of
the parent product version’s profile - it doesn’t make sense to write a test
case or execute a test run for a product version on environments the product
version itself does not support.

When a test case is included in a test run, the resulting “executable case”
gets its own environment profile: the intersection of the environment profiles
of the test run and the test case. So, for example, if the above Windows-only
test case were included in an Esperanto-only test run, that case, as executed
in that run, would get an even smaller environment profile containing only
Windows Esperanto environments.

Thus, the inheritance tree for environment profiles looks something like a
diamond:

product-version
 / \
 run case-version
 \ /
executable-case-version

Cascades

Whenever an environment is removed from an object’s profile, that removal
cascades down to all children of that object. So removing an environment from a
product version’s profile also automatically removes it from all test runs and
test cases associated with that product version.

Adding an environment only cascades in certain situations. Adding an
environment to a product version’s profile cascades to test runs only if they
are still in Draft state; once they are activated, their environment profile
can no longer be added to.

Additions to a product version’s environment profile cascade only to those test
cases whose environment profile is still identical to the product version’s
environment profile (i.e. test cases that apply to all environments the product
supports). Once a test case has been narrowed to a subset of the product
version’s full environment profile, additions to the product version’s profile
will have to be manually added to the case’s profile if the new environment
applies to that case.

Test results, once recorded, are never deleted, even if
their corresponding environment is removed from their product version or run’s
environment profile.

Select Environments

This page allows you to narrow the list of environments for a given object.
This can be a product version,
test run, test suite, or
test case. See Inheritance and Cascades above for
a detailed explanation. In this dialog, you can uncheck any environments that
you do not want to apply the version/run/suite/case in question. You can also
add environments back in that may have been previously removed. Just check or
uncheck items to include / exclude them.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Teams

Any product, product version, or
test run can optionally have a Team, which is just a set
of users. Teams are not named or managed as an independent entity; they are
simply a set of users associated with a given product, version, or run.

Teams are inherited by default; any product version without its own team
explicitly set will inherit its product’s team, and any test run without a team
set will inherit its product version’s team. Unlike environment
inheritance, there is no subset requirement - a test
run can be explicitly assigned any team, even if some members of that team are
not part of the product version or product’s team.

When a test run is activated, all team members for that test run will
automatically be assigned all test cases in that run.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Roles and Permissions

Default roles

Four default roles are created when you run python manage.py
create_default_roles: Tester, Test
Creator, Test Manager, and
Admin. These roles can be fully customized, and new ones can
be created (currently only via the Django admin at /admin/).

The default roles have the following permissions:

Tester

	execute

Test Creator

All Tester permissions, plus:

	create_cases

	manage_suite_cases

Test Manager

All Tester and Test Creator
permissions, plus:

	manage_cases

	manage_suites

	manage_tags

	manage_runs

	review_results

	manage_environments

Admin

All Tester, Test Creator and
Test Manager permissions, plus:

	manage_products

	manage_user

When setting up MozTrap, running the command python manage.py
create_default_roles will ask to create an admin user. This special first
admin has all these privileges:

	Admin role in the MozTrap UI: This gives the user the ability to visit
the Manage | Users area of the product. This user can edit other users
to:
	assign roles

	create api keys

	delete or deactivate

	Staff Status: This gives the user access to the /admin/ url. This
is a special behind the scenes access to the data in MozTrap. It is also
where items that were deleted can be undeleted.

	Superuser Status: A user that has this status will always have
admin privileges in the MozTrap UI, even if their role is changed to
something other than Admin.

So you can see that this first admin user is special, and also the gateway to
providing access for all other users to be admins.

Permissions

execute

Can run tests and report the results.

create_cases

Can create new test cases and edit them (but not edit test cases created by
others). Allows tagging of these test cases with existing tags, but not
creation of new tags.

manage_suite_cases

Can add and remove test cases from suites.

manage_cases

Can add, edit, and delete test cases and test case versions.

manage_suites

Can add, edit, and delete test suites.

manage_tags

Can add, edit, and delete tags.

manage_runs

Can add, edit, and delete test runs.

review_results

Can review submitted test results and mark them reviewed.

manage_environments

Can create, edit, and delete environment profiles, categories, elements, and
environments.

manage_products

Can create, edit, and delete products and product versions.

manage_user

Can create, edit, and delete users.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

REST API

These are the REST endpoints available to MozTrap. These are build using the
TastyPie [http://django-tastypie.readthedocs.org/en/latest/resources.html] package, so please also refer to the TastyPie documentation for more
info.

General

The general format for all rest endpoints is:

	
GET /api/v1/<object_type>/

	Return a list of objects

limit (optional) Defaults to 20 items, but can be set higher or lower.
0 will return all records, but may run afoul of
Example request:

GET /api/v1/product/?format=json&limit=50

	
GET /api/v1/<object_type>/<id>/

	Return a single object

	
POST /api/v1/<object_type>/

	Create one or more items.

	requires API key

	requires username

If sending the fields as data, the data must be sent as json, with
Content-Type application/json in the headers.

	
PUT /api/v1/<object_type>/<id>

	Update one item.

	requires API key

	requires username

	
DELETE /api/v1/<object_type>/<id>

	Delete one item.

	requires API key

	requires username

Note

	POST does not replace the whole list of items, it only creates new ones

	DELETE on a list is not supported

	PUT to a list is not supported

	commands that make changes may need to be sent to https, not http.

Query Parameters

	See each individual Object Types for the params it
supports.

	See TastyPie Filtering [http://django-tastypie.readthedocs.org/en/latest/resources.html#basic-filtering] for more info on query parameters.

Some fields are universal to all requests and Object Types:

	
	format (required) The API always requires a value of json for

	this field.

Note

The underscores in query param fields (like case__suites) are DOUBLE
underscores.

Supported Object Types

	Product API
	Product

	Product Version

	Test Cases and Suites API
	Case

	Test Runs API
	Test Run

	Run Case Versions

	Results

	Environment API
	Profile

	Category

	Element

	Environment

	Tags API
	Tag

	API Keys

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	REST API

Product API

Product

	
GET /api/v1/product

	

Filtering

	name:	The name of the product to filter on.

GET /api/v1/product/?format=json&name=Firefox

	
GET /api/v1/product/<id>

	

	
POST /api/v1/product

	

Required Fields

	name:	A string Product name.

	productversions:

		A list of at least one Product Version.

Optional Fields

	description:	A string description.

	
DELETE /api/v1/product/<id>

	

Note

Deleting a Product will delete all of it’s child objects.

	
PUT /api/v1/product/<id>

	

Note

ProductVersions are displayed in the GET results. They may be added to
or changed by a POST request, but a POST to Product will not delete
any ProductVersion.

Product Version

	
GET /api/v1/productversion

	

Filtering

	version:	The ProductVersion name to filter
on. For example, if the Product and Version are Firefox 10 then
the version would be 10.

	product:	The Product id to filter on.

	product__name:	The Product name to filter on.

Example request:

GET /api/v1/productversion/?format=json&version=10
GET /api/v1/productversion/?format=json&product__name=Firefox

	
GET /api/v1/productversion/<id>

	

	
POST /api/v1/productversion

	

Required Fields

	version:	A string ProductVersion name.

	product:	A resource uri of the parent Product.

Optional Fields

	codename:	A string codename.

	
DELETE /api/v1/productversion/<id>

	

	
PUT /api/v1/productversion/<id>

	

Note

The Product of an existing ProductVersion may not be changed.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	REST API

Test Cases and Suites API

For additional information, please consult
https://moztrap.readthedocs.org/en/latest/userguide/model/library.html

Case

	
GET /api/v1/case

	

Filtering

	product:	The Product id to filter on.

	product__name:	The Product name to filter on.

	suite:	The Suite id to filter on.

	suite__name:	The Suite name to filter on.

	
GET /api/v1/case/<id>

	

Note

Suites are displayed in the GET results, for
informational purposes, but may not be changed.

	
POST /api/v1/case

	

Required Fields

	product:	A resource uri to a Product.

Optional Fields

	idprefix:	A string that will be displayed as part of the case ID.

	
DELETE /api/v1/case/<id>

	

	
PUT /api/v1/case/<id>

	

Note

The product of an existing case may not be changed.

Case Version

	
GET /api/v1/caseversion

	

Filtering

	productversion:	The ProductVersion id to filter on.

	productversion__version:

		The ProductVersion name to filter
on. For example, if the Product and Version are Firefox 10 then
the productversion__version would be 10.

	productversion__product__name:

		The Product name to filter on.

	case__suites:	The Suite id to filter on.

	case__suites__name:

		The Suite name to filter on.

	tags__name:	The tag name to filter on.

Example request:

GET /api/v1/caseversion/?format=json&productversion__version=10&case__suites__name=Sweet%20Suite
GET /api/v1/caseversion/?format=json&productversion__product__name=Firefox

	
GET /api/v1/caseversion/<id>

	

Note

Environments, Tags, Suites and CaseSteps are displayed in the GET results for
informational purposes, but may not be changed.

	
POST /api/v1/caseversion

	

Required Fields

	case:	A resource uri to the parent Case

	productversion:	A resource uri to a ProductVersion

Optional Fields

	name:	A string name

	description:	A string description

	status:	active, draft, or disabled

Note

The parent Case’s Product must match the ProductVersion’s Product.

	
DELETE /api/v1/caseversion/<id>

	

	
PUT /api/v1/caseversion/<id>

	

Note

The productversion and case fields are not required, and may not be changed.

CaseSteps

	
GET /api/v1/casestep

	

Filtering

	caseversion:	The id of the parent caseversion

	caseversion__name:

		The name of the parent caseversion

	
POST /api/v1/casestep

	

Required Fields

	caseversion:	A resource uri to a CaseVersion

	instruction:	A string describing what actions to take

	number:	An integer used to order steps

Optional Fields

	expected:	The expected result following the instruction

	
DELETE /api/v1/casestep/<id>

	

	
PUT /api/v1/casestep/<id>

	

Note

The CaseVersion of an existing CaseStep may not be changed.

Suites

	
GET /api/v1/suite

	

Filtering

	name:	The name of the suite

	product:	The id of the product for this suite

	product__name:	The name of the product

Example request:

GET /api/v1/suite/?format=json

	
POST /api/v1/suite

	

Required Fields

	product:	A resource uri to a Product

Optional Fields

	name:	A string name

	description:	A string description

	status:	active, draft, or disabled

	
DELETE /api/v1/suite/<id>

	

	
PUT /api/v1/suite/<id>

	

Note

The Product of an existing Suite may not be changed.

SuiteCase

	
GET /api/v1/suitecase

	

	
GET /api/v1/suitecase/<id>

	

	
POST /api/v1/suitecase

	

Required Fields

	case:	A resource uri to a case

	suite:	A resource uri to a suite

	order:	An integer used to sort the cases within the suite.

Note

The Case’s Product must match the Suite’s Product.

	
DELETE /api/v1/suitecase/<id>

	

	
PUT /api/v1/suitecase/<id>

	

Note

Only the order may be changed for an existing SuiteCase.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	REST API

Test Runs API

Test Run

The Test Run (and related) API has some special handling that differs from the
standard APIs. This is because there is complex logic for submitting results,
and new runs with results can be submitted.

Please consider MozTrap Connect [https://moztrap-connect.readthedocs.org/en/latest/index.html] as a way to submit results for tests. You
can also check out MozTrap Connect on github [https://github.com/camd/moztrap-connect/].

	
GET /api/v1/run

	

	
POST /api/v1/run

	

	Productversion :

		(optional) The ProductVersion ID to filter on.

	Productversion__version :

		(optional) The ProductVersion name to filter
on. For example, if the Product and Version are Firefox 10 then
the productversion__version would be 10.

	Productversion__product__name :

		(optional) The Product name to filter on.

	Status :	(optional) The status of the run. One of active or draft.

Example request:

GET /api/v1/run/?format=json&productversion__version=10&case__suites__name=Sweet%20Suite

Run Case Versions

	
GET /api/v1/runcaseversion

	

Filtering

	run:	The id of the run

	run__name:	The name of the run

	caseversion:	The id of the caseversion

	caseversion__name:

		The name of the caseversion

GET /api/v1/product/?format=json&run__name=runfoo

Results

	
PATCH /api/v1/result

	Example request:
This endpoint is write only. The submitted result objects should
be formed like this:

{
 "objects": [
 {
 "case": "1",
 "environment": "23",
 "run_id": "1",
 "status": "passed"
 },
 {
 "case": "14",
 "comment": "why u no make sense??",
 "environment": "23",
 "run_id": "1",
 "status": "invalidated"
 },
 {
 "bug": "http://www.deathvalleydogs.com",
 "case": "326",
 "comment": "why u no pass?",
 "environment": "23",
 "run_id": "1",
 "status": "failed",
 "stepnumber": 1
 }
]
}

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	REST API

Environment API

Environments do not behave in quite the same way in the API as they do in
the Web UI. In the API, create Categories and their child Elements first,
then create a Profile for which you can create Environments whose elements
must each belong to a separate profile.

Profile

	
GET /api/v1/profile

	

Filtering

	name:	The name of the Profile to filter on.

	
GET /api/v1/profile/<id>

	

	
POST /api/v1/profile

	

Required Fields

	name:	A string Profile name.

	
DELETE /api/v1/profile/<id>

	

	
PUT /api/v1/profile/<id>

	

Category

	
GET /api/v1/category

	

Filtering

	name:	The name of the Category to filter on.

	
GET /api/v1/category/<id>

	

	
POST /api/v1/category

	

Required Fields

	name:	A string Category name.

	
DELETE /api/v1/category/<id>

	

	
PUT /api/v1/category/<id>

	

Element

	
GET /api/v1/element/

	

Filtering

	name:	The name of the Element to filter on.

	category:	The id of the Category to filter on.

	category__name:	The name of the Category to filter on.

	
GET /api/v1/element/<id>

	

	
POST /api/v1/element

	

Required Fields

	name:	A string Element name.

	category:	A resource uri to the parent Category.

	
DELETE /api/v1/element/<id>

	

	
PUT /api/v1/element/<id>

	

Note

The Category of an existing Element may not be changed.

Environment

	
GET /api/v1/environment

	

Filtering

	elements:	(optional) The Element ID to filter on.

Example request:

GET /api/v1/environment/?format=json&elements=5

	
GET /api/v1/environment/<id>

	

	
POST /api/v1/environment

	

Required Fields

	profile:	A resource uri to the parent Profile.

	elements:	A list of element resource uri’s.

Note

Each element must be from a separate category.

	
DELETE /api/v1/environment/<id>

	

	
PUT /api/v1/environment/<id>

	

	
PATCH /api/v1/environment

	The PATCH command is being overloaded to provide combinatorics
services to create environments out of elements contained by
categories.

To create environments for all of the combinations of elements in
the listed categories:

data={
 u'profile': u'/api/v1/profile/1',
 u'categories': [u'/api/v1/category/1', ...]
}

You may also do combinatorics with partial sets of elements from
the categories by using dictionaries with ‘include’ and ‘exclude’ keys.

data={
 u'profile': u'/api/v1/profile/1',
 u'categories': [
 {
 u'category': u'/api/v1/category/1',
 u'exclude': [u'/api/v1/element/1']
 },
 {
 u'category': u'/api/v1/category/2',
 u'include': [
 u'/api/v1/element/4',
 u'/api/v1/element/5'
]
 },
 {
 u'category': u'/api/v1/category/3'
 }
]
}

Note

The included or excluded elements must be members of the category
they accompany. If both include and exclude are sent with the same
category, exclude will be performed.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	REST API

Tags API

Tag

	
GET /api/v1/tag

	

Filtering

	name:	The Tag name to filter on.

	product:	The Product id to filter on.

	product__name:	The Product name to filter on.

Example request:

GET /api/v1/tag/?format=json

	
GET /api/v1/tag/<id>

	

	
POST /api/v1/tag

	

Required Fields

	name:	A string name for the Tag.

	product:	A resource uri to a Product.

Optional Fields

	description:	A string description for the Tag.

	
DELETE /api/v1/tag/<id>

	

	
PUT /api/v1/tag/<id>

	

Note

The Tag’s Product may not be changed unless the tag is not in use, the
product is being set to None, or the product matches the existing cases.”

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

 	REST API

API Keys

API Keys are generated on the Manage | Users page for a user. Only an
Admin can create an API Key for a user.

The API key is passed on the query string for an API like this:

``POST /api/v1/product?username=camd&api_key=abc123``

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Filtering

Quick Filtering

[image: ../../_images/filter_quick.png]
You can type into this field if you generally know the text of what you want
to filter on. Auto-complete will give you several choices. Take care to
select the choice with the correct field. For instance

[image: ../../_images/filter_quick_field.png]
Here you can see that filtering can be done on any of these specific fields.
If you filter for the word test in the wrong field, you may not get the
results you were hoping for.

Advanced Filtering

[image: ../../_images/filter_advanced.png]
Clicking the Advanced Filtering button will expand a list of supported filter
fields for the current screen.

[image: ../../_images/filter_advanced_field.png]
This can help be more specific in your filtering and can also help if, for
instance, you don’t know the exact spelling of the product you would like
to filter on.

Sharing Filters

[image: ../../_images/filter_link.png]
Click on the link button to open a drop-down that has a link you can share
that includes all the filters to your current list and page.

Pinning Filters

[image: ../../_images/filter_pinned.png]
When you have selected a filter, it may be one that you would like to
stick wherever you go in MozTrap. That’s what pinned filters are for.
Pinning a filter will persist that choice.

Perhaps the most useful fields to pin would be the product
field and the product version fields. Pinning
these fields means you would only see the information that pertains to them
no matter where you go in the product.

Note

Some screens may not show all of your pinned filters. For example, if you
pin a product and product version in the manage | cases screen,
you will see both pinned filters show in orange. However, if you then
navigate to the manage | suites screen, you will notice that you only
see the pinned product filter. This is because suites are not specific
to any product version and therefore don’t have a filter for it. Suites
only have a product filter, so that is what you see.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Working with Lists

Much of the navigation in MozTrap is done with lists. When managing
things like Test Cases, it is possible to have a very long
list of items.

Filters

You can use filters to narrow down the size of the list you’re currently
viewing. You can do simple filtering by either clicking certain fields in the
list (like tags or Product Version), or by typing them in the filter field.

Another option is to click the “Advanced Filtering” button to show your filter
options. Simply click the item value you would like to use for filtering. When it
has a check mark next to it, the filter is enabled.

Note

If you have two filters for items of the same type (such as two Tag
filters) then the filters are treated as an OR between them, rather than an
AND. For instance, if you filter on tags “One” and “Two” the list will
reflect items that have EITHER “One” or “Two”, not just ones that have
both.

Controls

Details

[image: ../../_images/controls_expand.png]
Notice there is a triangle on the very left of every list item. Click this
triangle to expand and see details about that list item.

Status

[image: ../../_images/controls_status.png]
Many lists have items that can be in active, draft, or disabled
state. Clicking this icon will give you a drop-down to change the items
state.

	active - This item can be used for running tests. For example, active
cases and suites will be included in test run execution. Active runs can be
executed.

	draft - These items are considered still under development and won’t
be used in runs. draft cases can still be included in suites, and
draft suites can still be included in runs, but they will not show up
when actually executing a run.

	disabled - These are items that are no longer intended for use. Similar
to draft mode in that they can’t be used for test execution.

Edit

[image: ../../_images/controls_edit.png]
Navigates to an edit page where you can change the values of the item. For
some items, the status may make a difference. For instance, when editing an
active test run, you will not be able to change which
suites it contains. You must change it to draft mode first.

Environment

[image: ../../_images/controls_env.png]
Navigates to a page to manage which environments pertain to this item.

Clone

[image: ../../_images/controls_clone.png]
Make a copy of the item. For cases this is a good way to
make a derivative version of an existing case.

Delete

[image: ../../_images/controls_delete.png]
Delete the item. MozTrap always uses soft deletes. So if you delete
something and change your mind, an administrator can un-delete the item in
the /admin panel.

Test Run Controls

Refresh Cases

[image: ../../_images/run_controls_refresh.png]
Refreshes the test run cases to remove or add cases based on any
changes in status made to suites or cases (including additions of new
cases to suites) since this run was made active.

See Refreshing a Run for details.

Test Suite Controls

Add Case

[image: ../../_images/suite_controls_add_case.png]
Navigates to the Create a new Test Case page with this suite
field pre-populated.

See Test Cases for more details.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Running Tests

To execute a Test Run select the Run Tests tab at the top
of MozTrap. From here, select the Product,
Product Version and Run. Then you
will be prompted to enter the environment you are using
to test.

Result Statuses

	passed - All steps of the test matched the expected result.

	failed - One or more steps of the test did not match the expected result.

	
	invalid - The steps of the test were either incorrect, or unclear to the

	extent that it was not possible to determine if it passed or
failed

	
	skipped - A test manager decided this test should not be run and should

	not count against the % complete for any environment.
Marking a test skipped
marks that test skipped for ALL environments the case applies
to. This is true, even if the case had been marked passed or
otherwise in a different environment. Likewise, restarting a
skipped case will restart it for all environments.

	
	blocked - The test could not be run because the user was blocked from

	beginning the test. For example, if the steps are to complete
a purchase of something in their shopping cart, but the user
can’t even add items to the shopping cart, then the case could
be considered blocked.

Marking a result

Expand a case to see buttons to mark the test passed, failed, skipped,
blocked or invalid.
You can fail any specific step of a test case. Marking a case invalid means
that the tester was not able to execute the test and it needs updating.

Results of others

On the summary line of a test, an icon will appear if another tester has
already executed that test in the same environment. If this icon shows, it
will display the status the other user gave it (passed, failed or invalid).
Hovering your mouse over the icon will display any comments the user made on
invalid or failed tests. If you click this button, a new tab will open to show
you the specifics of all results given for this test.

Updating a test

Click the Edit Case Details in the test description to update the test
case. This will take you to the edit page for the test case. When you return
to the run page, you will need to refresh your page to see the updates.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

 	User’s Guide

Data Import Formats

Note

Imported data should always be UTF-8 encoded.

JSON

JSON is a great way to import more complex sets of cases
and suites for your product. One JSON file will be used
per product version. Simply use the
user interface to create the Product and Version that applies to the cases and
suites to be imported. Then just import your JSON file to
that product version.

Simple Example:

{
 "suites": [
 {
 "name": "suite name",
 "description": "suite description"
 }
],
 "cases": [
 {
 "name": "case title",
 "description": "case description",
 "tags": ["tag1", "tag2", "tag3"],
 "suites": ["suite1 name", "suite2 name", "suite3 name"],
 "created_by": "cdawson@mozilla.com",
 "steps": [
 {
 "instruction": "instruction text",
 "expected": "expected text"
 },
 {
 "instruction": "instruction text",
 "expected": "expected text"
 }
]
 }
]
}

Both top-level sections (“suites” and “cases”) are optional. However, if either
section is included, each item requires a “name” field value. Other than that,
all fields are optional.

Importing

Importing test cases with this method involves the use of a management
command. Before you import the cases, you must create your Product and
product version in the user interface as mentioned
above. If the suites in your JSON file do not already
exist, they will be created for you.

Import command

Importing involves a management command on the command line. For this
example, we are importing test cases from a file called MyCases.json to
version 1.0 of product Foo. .

	cd into your MozTrap directory

	./manage.py import Foo 1.0 MyCases.json

That should be it. Now go back to the web interface and your cases will be
imported.

CSV (future)

When importing from a spreadsheet or wiki set of test cases, this may prove a
very useful format. This doesn’t handle multiple separate steps in test cases.
Rather, it presumes all steps are in a single step when imported to MozTrap.

Bulk Test Case Entry Formats

Gherkin-esque

This is one of the test case formats supported in the bulk test case creator.

Format:

Test that <test title>
<description text>
When <instruction>
Then <expected result>

Example:

Test that I can write a test
This test tests that a user can write a test
When I execute my first step instruction
then the expected result is observed
And when I execute mysecond step instruction
Then the second step expected result is observed

Markdown (future)

This will be another format for the bulk test case creator.

Example:

Test case 1 title here
======================
Description text here

* which can contain bullets
* **with formatting**
 * indentation
 * [and links](www.example.com)

Steps

1. Step 1 action
 * Step 1 Expected Result
2. Step 2 action
 * Step 2 Expected Result

Test case 2 title here
======================
...

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

Installation

Quickstart

MozTrap requires Python [http://www.python.org] 2.6 or 2.7 and MySQL [http://www.mysql.com] 5.1+ with the InnoDB
backend.

These steps assume that you have git [http://git-scm.com], virtualenv [http://www.virtualenv.org], virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/],
and a compilation toolchain available (with the Python [http://www.python.org] and MySQL [http://www.mysql.com] client
development header files), and that you have a local MySQL [http://www.mysql.com] server running
which your shell user has permission to create databases in. See the full
Installation documentation for details and troubleshooting.

	git clone --recursive git://github.com/mozilla/moztrap

	cd moztrap

	mkvirtualenv moztrap

	bin/install-reqs

	echo "CREATE DATABASE moztrap CHARACTER SET utf8" | mysql

	create a local.py

	./manage.py syncdb --migrate

	./manage.py create_default_roles

	./manage.py runserver

	Visit http://localhost:8000 in your browser.

Congratulations! If that all worked, you have a functioning instance of MozTrap
for local testing, experimentation, and development.

Please read the Deployment documentation for important security and
other considerations before deploying a public instance of MozTrap.

Detailed Install

First, clone the MozTrap repository [https://github.com/mozilla/moztrap].

Dependency source distribution tarballs are stored in a git submodule, so you
either need to clone with the --recursive option, or after cloning, from
the root of the clone, run:

git submodule init; git submodule update

If you want to run the latest and greatest code, the default master branch
is what you want. If you want to run a stable release branch, switch to it now:

git checkout 1.4.5.5

Install the Python dependencies

If you want to run this project in a virtualenv [http://www.virtualenv.org] to isolate it from other
Python projects on your system, create the virtualenv and activate it. Then run
bin/install-reqs to install the dependencies for this project into your
Python environment.

Note

On some linux flavors, you may need to run
sudo apt-get install libmysqlclient-dev prior to bin/install-reqs.

Installing the dependencies requires pip [http://www.pip-installer.org] 1.0 or higher. pip [http://www.pip-installer.org] is
automatically available in a virtualenv [http://www.virtualenv.org]; if not using virtualenv [http://www.virtualenv.org] you may
need to install it yourself.

A few of MozTrap’s dependencies include C code and must be
compiled. These requirements are listed in requirements/compiled.txt. You
can either compile them yourself (the default option) or use pre-compiled
packages provided by your operating system vendor.

Compiling

By default, bin/install-reqs installs all dependencies, including several
that require compilation. This requires that you have a working compilation
toolchain (apt-get install build-essential on Ubuntu, Xcode on OS X). It
also requires the Python development headers (apt-get install python-dev on
Ubuntu) and the MySQL client development headers (apt-get install
libmysqlclient-dev on Ubuntu).

If you are lacking the Python development headers, you will get the error
Python.h: No such file or directory. If you are lacking the MySQL client
development files, you will get an error that mysql_config cannot be found.

Using operating system packages

If you prefer to use pre-compiled operating system vendor packages for the
compiled dependencies, you can avoid the need for the compilation toolchain and
header files. In that case, you need to install MySQLdb [http://pypi.python.org/pypi/python-mysqldb], py-bcrypt [http://pypi.python.org/pypi/py-bcrypt], and
coverage [http://nedbatchelder.com/code/coverage/] (the latter only if you want test coverage data) via operating
system packages (apt-get install python-mysqldb python-bcrypt
python-coverage on Ubuntu).

If using a virtualenv [http://www.virtualenv.org], you need to ensure that it is created with access to
the system packages. In virtualenv [http://www.virtualenv.org] versions prior to 1.7 this was the
default, in recent versions use the --system-site-packages flag when
creating your virtualenv [http://www.virtualenv.org].

Once you have the compiled requirements installed, install the rest of the
requirements using bin/install-reqs pure; this installs only the
pure-Python requirements and doesn’t attempt to compile the compiled
ones. Alternatively, you can skip bin/install-reqs entirely and use the
provided Vendor library.

Create a database

You’ll need a MySQL database. If you have a local MySQL server and your user
has rights to create databases on it, just run this command to create the
database:

echo "CREATE DATABASE moztrap CHARACTER SET utf8" | mysql

(If you are sure that UTF-8 is the default character set for your MySQL server,
you can just run mysqladmin create moztrap instead).

If you get an error here, your shell user may not have permissions to create a
MySQL database. In that case, you’ll need to append -u someuser to the end
of that command, where someuser is a MySQL user who does have permission to
create databases (in many cases -u root will work). If you have to use
-u to create the database, then before going on to step 5 you’ll also need
to create a moztrap/settings/local.py file (copy the sample provided at
moztrap/settings/local.sample.py), and uncomment the DATABASES setting,
changing the USER key to the same username you passed to -u.

Create the database tables

Run ./manage.py syncdb --migrate to install the database tables.

Create the default user roles

This step is not necessary; you can create your own user roles with whatever
sets of permissions you like. But to create a default set of user roles and
permissions, run ./manage.py create_default_roles.

Run the development server

Run ./manage.py runserver to run the local development server. This server
is a development convenience; it’s inefficient and probably insecure and should
not be used in production.

All done!

You can access MozTrap in your browser at http://localhost:8000.

For a production deployment of MozTrap, please read the
Deployment documentation for important security and other
considerations.

For notes on upgrading to a more recent MozTrap, see the
Upgrading documentation.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

Upgrading

To upgrade, simply use git [http://git-scm.com] to pull in the newer code from the GitHub
repository [https://github.com/mozilla/moztrap/] and update the submodules:

git pull
git submodule update

If you are on a stable release branch (e.g. 0.8.X) and you want to update
to a newer release branch (e.g. 0.9.X), make sure you’ve fetched the latest
code on all branches, switch to the branch you want, and update to the correct
version of the submodules for that branch:

git fetch
git checkout 0.9.X
git submodule update

Updating dependencies

Run git submodule update to get the latest version of the dependency
submodules, and then bin/install-reqs to install them into your
environment. Both of these commands are idempotent; there’s no harm in running
them every time, whether there have been any dependency changes or not.

If you are using the Vendor library, bin/install-reqs is not
necessary, the submodule update will get the latest version of the vendored
dependencies.

Database migrations

It’s possible that the changes you pulled in may have included one or more new
database migration scripts. To run any pending migrations:

python manage.py syncdb --migrate

This command is idempotent, so there’s no harm in running it after every
upgrade, whether it’s necessary or not.

Warning

It is possible that a database migration will include the creation of a new
database table. If you’ve commented out the SET storage_engine=InnoDB
init_command in your moztrap/settings/local.py for performance reasons
(see Database performance tweak), you should uncomment it before
running any migrations, to ensure that all new tables are created as
InnoDB tables.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	MozTrap 1.4 documentation

Development

The Upgrading documentation is also applicable to updating your
development checkout of MozTrap.

Community

To connect with MozTrap development, visit the #moztrap IRC channel at
irc.mozilla.org, or see the Pivotal Tracker backlog [https://www.pivotaltracker.com/projects/280483].

Updating this documentation

MozTrap documentation is hosted on ReadTheDocs.org and is maintained in the
MozTrap repo. So updating the docs involves forking the repo, changing the
appropriate reStructuredText documents and submitting a pull request. Then
the team will review them and merge them after any needed adjustments are made.

So here are your steps:

	fork the MozTrap repo [https://github.com/mozilla/moztrap]

	make any changes in the /docs folder using Sphinx and
reStructuredText [http://sphinx-doc.org/rest.html] formatting

	test that your changes are correctly formatted by installing the python
Sphinx package (in the repo’s requirements.txt document) by typing
make html in that same /docs folder

	load the file: /docs/_build/html/index.html into your browser
(it’s Firefox [http://www.mozilla.org/en-US/firefox/new/], right?) to test your changes

	submit your pull request and it will be reviewed shortly

	receive a big thanks for helping!!

Coding standards

See the Coding Standards for help writing code that will maintain a consistent
style and quality with the rest of the codebase.

User registration

MozTrap’s default settings use Django’s “console” email backend to avoid
requiring an SMTP server or sending real emails in development/testing mode. So
when registering a new user, pay attention to your runserver console; this is
where the confirmation email text will appear with the link you need to visit
to activate the new account.

Running the tests

To run the tests, after installing all Python requirements into your
environment:

bin/test

To view test coverage data, load htmlcov/index.html in your browser after
running the tests.

To run just a particular test module, give the dotted path to the module:

bin/test tests.model.core.models.test_product

Give a dotted path to a package to run all tests within that package, including
in submodules:

bin/test tests.model.core

Compass/Sass

MozTrap’s CSS (located in static/css) is generated using Sass [http://sass-lang.com] and
the Compass [http://compass-style.org] framework, with the Susy [http://susy.oddbird.net] grid plugin. Sass source files are
located in sass/.

The generated CSS is included with MozTrap, so Sass and Compass are not
needed to run MozTrap. You only need them if you plan to modify the Sass
sources and re-generate the CSS.

To install the necessary Ruby gems for Compass/Sass development, run
bin/install-gems. Update requirements/gems.txt if newer gems should be
used.

While tweaking the sass files, you should run the command line file to update
the CSS as you go. To do this:

compass watch

or a workaround to a bug for Mac OS 10.8:

compass watch --poll

Loading sample data

A JSON fixture of sample data is provided in fixtures/sample_data.json. To
load this fixture, run bin/load-sample-data.

Warning

Loading the sample data will overwrite existing data in your database. Do
not load it if you have data in your database that you care about.

The sample data already includes the default roles, so
there is no need to run a separate command to create them.

The sample data also includes four users, one for each default role. Their
usernames are tester, creator, manager, and admin. All of them have the
password testpw.

Resetting your database

To drop your database and create a fresh one including only the sample data,
run these commands:

Note

If your shell user doesn’t have the MySQL permissions for the first two
commands, you may need to append e.g. -uroot to them.

mysqladmin drop moztrap
echo "CREATE DATABASE moztrap CHARACTER SET utf8" | mysql
python manage.py syncdb --migrate
bin/load-sample-data

If you create a superuser during the course of the syncdb command
(recommended so that you can access the Django admin), the sample data fixture
will not overwrite that superuser.

Regenerating the sample data

The sample data fixture is generated using django-fixture-generator [http://github.com/alex/django-fixture-generator] via
the code in moztrap/model/core/fixture_gen.py,
moztrap/model/environments/fixture_gen.py,
moztrap/model/tags/fixture_gen.py,
moztrap/model/library/fixture_gen.py and
moztrap/model/execution/fixture_gen.py.

If you’ve modified one of the above files, you can regenerate the fixture by
running bin/regenerate-sample-data.

Adding or updating a dependency

Adding a new dependency (or updating an existing one to a newer version)
involves a few steps, since the requirements files and both submodules (the
requirements tarballs submodule in requirements/dist and the Vendor library submodule in requirements/vendor) must be updated.

Preparing your checkout

By default, the submodules are both checked out via a read-only anonymous URL,
so that anyone can check them out. In order to push commits to the submodules,
you’ll need to switch the push url to use ssh. Make this change as follows:

cd requirements/dist
git remote set-url --push origin git@github.com:mozilla/moztrap-reqs

cd ../vendor
git remote set-url --push origin git@github.com:mozilla/moztrap-vendor-lib

This assumes that you have permission to push to the primary
moztrap-reqs and moztrap-vendor-lib repositories. If
instead you have made your own forks of one or both of these repositories,
adjust the above URLs to push to your fork.

Adding the dependency tarball

Assuming the new dependency is a Python package available on PyPI [http://pypi.python.org/pypi/] (for the
sake of this example we’ll assume that we want the 2.1.1 version of the
Markdown package [http://pypi.python.org/pypi/Markdown/2.1.1]), from the root of your MozTrap checkout run this
command in order to download the tarball into requirements/dist:

pip install -d requirements/dist Markdown==2.1.1

This should add the Markdown-2.1.1.tar.gz file into
requirements/dist. We want to add this file and commit the change to the
submodule. First, though, we need to ensure that we are actually committing on
a branch in the submodule, since by default git does not check out submodules
on a branch.

In most cases, you can just check out the master branch of the submodule
and commit there:

cd requirements/dist
git checkout master
git add Markdown-2.1.1.tar.gz
"git rm" the older Markdown tarball, if you're updating
git commit -m "Add Markdown 2.1.1."
git push

Note

If you are working on a release branch of MozTrap rather than the master
branch, you may find that updating the submodule to master updates the
version of some dependency to a more recent version, and your branch of
MozTrap is not prepared for this dependency update. In that case rather than
updating to the submodule’s master branch, you should create a new branch of
the submodule with a name matching the branch of MozTrap you are working on;
replace git checkout master in the above with e.g. git branch
0.8.X. (If you’ve already done the git checkout master, go back out to
the MozTrap repo root and git submodule update to get back to the pinned
commit of the submodule, then cd requirements/dist and git branch
0.8.X.) If you create your own branch of the submodule, you may need to
also replace git push with e.g. git push -u origin 0.8.X).

Similarly, if you are working on a feature branch, and your feature branch
requires a newer version of a dependency, it is preferable to make a branch
of the submodule. The master branch of MozTrap is tied to a specific
commit of the submodule, so it won’t create an immediate problem if you just
push to the submodule’s master branch; but if some other feature on the
master branch must also update a dependency, there could be a problem if
everyone is just pushing to the submodule’s master branch. (If you are just
adding a dependency, not changing the version of an existing one, this
really isn’t an issue, as having the extra tarball around won’t hurt
anything for another branch).

Updating the requirements file

If your added dependency is a pure-Python dependency (no compiled C
extensions), add an entry to requirements/pure.txt like
Markdown==2.1.1.

If your added dependency does require compilation, add it to
requirements/compiled.txt instead.

If you are just updating the version of an existing dependency, find the
existing requirement line and change the version.

Updating the vendor library

Note

This step is only necessary for pure-Python dependencies. Compiled
dependencies should not be included in the vendor library.

Note

Due to a bug in pip, this step currently must be done within an empty
--no-site-packages virtualenv [http://www.virtualenv.org]. (Virtualenv 1.7+ automatically creates
--no-site-packages envs by default; with an earlier version you must use
the --no-site-packages flag).

If you’ve correctly created and activated a -no-site-packages
virtualenv, pip freeze should show only the wsgiref package (which
is part of the Python standard library).

Now, from the root of the MozTrap repo, run:

bin/generate-vendor-lib
cd requirements/vendor
git status

The only changed files shown here should be the new Python files for your added
dependency (or, if upgrading a dependency, possibly some added/modified/removed
files, but nothing outside the one upgraded package).

If that is the case, commit your changes to the master branch (or the branch
you chose earlier) and push using the same steps as shown above for the
requirements/dist submodule.

Pulling it all together

At this point, if you run git status in the root of the MozTrap
repo, you should see three modifications: a modification to
requirements/pure.txt and (new commits) in the requirements/dist
and requirements/vendor submodules (or, if you added a compiled module, a
modification to requirements/compiled.txt and (new commits) only in
requirements/dist).

Add these changes, commit, push, and you’re done!

git add requirements/
git ci -m "Add Markdown 2.1.1 dependency."
git push

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	MozTrap 1.4 documentation

Deployment

Django’s built-in runserver is not suitable for a production deployment;
use a WSGI-compatible webserver such as Apache [http://httpd.apache.org] with mod_wsgi [http://modwsgi.org], or
gunicorn [http://gunicorn.org]. A WSGI application callable is provided in moztrap/deploy/wsgi.py
in the application object.

You’ll also need to serve the static assets; Apache [http://httpd.apache.org] or nginx [http://nginx.org] can do
this.

You’ll need a functioning SMTP server for sending user registration
confirmation emails; configure the EMAIL_* settings and
DEFAULT_FROM_EMAIL in your moztrap/settings/local.py to the appropriate
values for your server.

The default local-memory cache backend [http://docs.djangoproject.com/en/dev/topics/cache/] is not suitable for use with a
production (multi-process) webserver; you’ll get CSRF errors on login because
the CSRF token won’t be found in the cache. You need an out-of-process cache
backend: memcached or Redis is recommended for production deployment. The
Django file or database cache backends may also work for a small deployment
that is not performance-sensitive. Configure the CACHE_BACKENDS setting in
moztrap/settings/local.py for the cache backend you want to use.

In addition to the notes here, you should read through all comments in
moztrap/settings/local.sample.py and make appropriate adjustments to your
moztrap/settings/local.py before deploying this app into production.

Logins

By default all access to the site requires authentication. If the
ALLOW_ANONYMOUS_ACCESS setting is set to True in
moztrap/settings/local.py, anonymous users will be able to read-only browse the
management and test-results pages (but will not be able to submit test results
or modify anything).

By default MozTrap uses BrowserID [http://browserid.org] for all logins, but it also
supports conventional username/password logins. To switch to username/password
logins, just set USE_BROWSERID to False in moztrap/settings/local.py.

If using BrowserID (the default), you need to make sure that your SITE_URL
is set correctly in moztrap/settings/local.py, or BrowserID logins will not
work.

Vendor library

For deployment scenarios where pip-installing dependencies into a Python
environment (as bin/install-reqs does) is not preferred, a pre-installed
vendor library is provided in requirements/vendor/lib/python. This library
does not include the compiled dependencies listed in
requirements/compiled.txt; these must be installed separately via e.g.
system package managers. The site.addsitedir function should be used to
add the requirements/vendor/lib/python directory to sys.path, to ensure
that .pth files are processed. A WSGI entry-point script is provided in
moztrap/deploy/vendor_wsgi.py that makes the necessary sys.path adjustments,
as well as a version of manage.py in vendor-manage.py.

If you are using the vendor library and you want to run the MozTrap
tests, bin/test won’t work as it uses manage.py. Instead run python
vendor-manage.py test.

If you need code coverage metrics (and you have the coverage module
installed; it isn’t included in the vendor library as it has a compiled
extension), use this:

coverage run vendor-manage.py test
coverage html
firefox htmlcov/index.html

Security

In a production deployment this app should be served exclusively over HTTPS,
since almost all use of the site is authenticated, and serving authenticated
pages over HTTP invites session hijacking attacks. The
SESSION_COOKIE_SECURE setting should be set to True in
moztrap/settings/local.py when the app is being served over HTTPS.

Run python manage.py checksecure on your production deployment to check
that your security settings are correct.

Static assets

This app uses Django’s staticfiles contrib app [http://docs.djangoproject.com/en/dev/howto/static-files/] for collecting static assets
from reusable components into a single directory for production serving, and
uses django-compressor [http://django_compressor.readthedocs.org/en/latest/index.html] to compress and minify them. Follow these steps to
deploy the static assets into production:

	Ensure that COMPRESS_ENABLED and COMPRESS_OFFLINE are both
uncommented and set to True in moztrap/settings/local.py.

	Run python manage.py collectstatic to collect all static assets into the
collected-assets directory (or whatever STATIC_ROOT is set to in
moztrap/settings/local.py).

	Run python manage.py compress to minify and concatenate static assets.

	Make the entire resulting contents of STATIC_ROOT available over HTTP at
the URL STATIC_URL is set to.

If deploying to multiple static assets servers, probably steps 1-3 should be
run once on a deployment or build server, and then the contents of
STATIC_ROOT copied to each web server.

Database performance tweak

In order to ensure that all database tables are created with the InnoDB
storage engine, MozTrap’s default settings file sets the database
driver option “init_command” to “SET storage_engine=InnoDB”. This causes
the SET command to be run on each database connection, which is an
unnecessary slowdown once all tables have been created. Thus, on a
production server, you should comment this option from your
moztrap/settings/local.py file’s DATABASES setting after you’ve run
python manage.py syncdb --migrate to create all tables (uncomment it
before running python manage.py syncdb or python manage.py migrate
after an update to the MozTrap codebase, or before trying to run the
tests).

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	MozTrap 1.4 documentation

 HTTP Routing Table

 /api

 			

 		
 /api	

 	
 	
 GET /api/v1/<object_type>/	

 	
 	
 POST /api/v1/<object_type>/	

 	
 	
 PUT /api/v1/<object_type>/<id>	

 	
 	
 DELETE /api/v1/<object_type>/<id>	

 	
 	
 GET /api/v1/<object_type>/<id>/	

 	
 	
 GET /api/v1/case	

 	
 	
 POST /api/v1/case	

 	
 	
 GET /api/v1/case/<id>	

 	
 	
 PUT /api/v1/case/<id>	

 	
 	
 DELETE /api/v1/case/<id>	

 	
 	
 GET /api/v1/casestep	

 	
 	
 POST /api/v1/casestep	

 	
 	
 PUT /api/v1/casestep/<id>	

 	
 	
 DELETE /api/v1/casestep/<id>	

 	
 	
 GET /api/v1/caseversion	

 	
 	
 POST /api/v1/caseversion	

 	
 	
 GET /api/v1/caseversion/<id>	

 	
 	
 PUT /api/v1/caseversion/<id>	

 	
 	
 DELETE /api/v1/caseversion/<id>	

 	
 	
 GET /api/v1/category	

 	
 	
 POST /api/v1/category	

 	
 	
 GET /api/v1/category/<id>	

 	
 	
 PUT /api/v1/category/<id>	

 	
 	
 DELETE /api/v1/category/<id>	

 	
 	
 POST /api/v1/element	

 	
 	
 GET /api/v1/element/	

 	
 	
 GET /api/v1/element/<id>	

 	
 	
 PUT /api/v1/element/<id>	

 	
 	
 DELETE /api/v1/element/<id>	

 	
 	
 GET /api/v1/environment	

 	
 	
 PATCH /api/v1/environment	

 	
 	
 POST /api/v1/environment	

 	
 	
 GET /api/v1/environment/<id>	

 	
 	
 PUT /api/v1/environment/<id>	

 	
 	
 DELETE /api/v1/environment/<id>	

 	
 	
 GET /api/v1/product	

 	
 	
 POST /api/v1/product	

 	
 	
 GET /api/v1/product/<id>	

 	
 	
 PUT /api/v1/product/<id>	

 	
 	
 DELETE /api/v1/product/<id>	

 	
 	
 GET /api/v1/productversion	

 	
 	
 POST /api/v1/productversion	

 	
 	
 GET /api/v1/productversion/<id>	

 	
 	
 PUT /api/v1/productversion/<id>	

 	
 	
 DELETE /api/v1/productversion/<id>	

 	
 	
 GET /api/v1/profile	

 	
 	
 POST /api/v1/profile	

 	
 	
 GET /api/v1/profile/<id>	

 	
 	
 PUT /api/v1/profile/<id>	

 	
 	
 DELETE /api/v1/profile/<id>	

 	
 	
 PATCH /api/v1/result	

 	
 	
 GET /api/v1/run	

 	
 	
 POST /api/v1/run	

 	
 	
 GET /api/v1/runcaseversion	

 	
 	
 GET /api/v1/suite	

 	
 	
 POST /api/v1/suite	

 	
 	
 PUT /api/v1/suite/<id>	

 	
 	
 DELETE /api/v1/suite/<id>	

 	
 	
 GET /api/v1/suitecase	

 	
 	
 POST /api/v1/suitecase	

 	
 	
 GET /api/v1/suitecase/<id>	

 	
 	
 PUT /api/v1/suitecase/<id>	

 	
 	
 DELETE /api/v1/suitecase/<id>	

 	
 	
 GET /api/v1/tag	

 	
 	
 POST /api/v1/tag	

 	
 	
 GET /api/v1/tag/<id>	

 	
 	
 PUT /api/v1/tag/<id>	

 	
 	
 DELETE /api/v1/tag/<id>	

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 routing table |

 	MozTrap 1.4 documentation

Index

 P

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 257

 	PEP 8

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 _images/manage_environments.png
® Run Tests -4 View Results Manage

Tags Products Versic

_static/minus.png

_images/controls_status.png
Alpha 1

_images/run_activate.png
feature complete (2 Suites =) (Series Runs)
br duper series - Build: 20b (4 Suites =)

br duper series - Build: 2234 (4 Suites =)

er duper series - Build: 19 beta (4 Suites =)

_images/suite_controls_add_case.png
contacts

_images/filter_quick_field.png
MANAGE TEST CASES

expected result]

[instruction]

et

i)

search.html

 Navigation

 		
 index

 		
 routing table |

 		MozTrap 1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

standards.html

 Navigation

 		
 index

 		
 routing table |

 		
 next |

 		
 previous |

 		MozTrap 1.4 documentation »

 		Development »

Coding Standards

		Python
		Testing

		Style
		Line length

		Docstrings

		Imports

		Whitespace

		Line continuations

		Comments

		Quotes

		Javascript

Python

Testing

All tests should pass, and 100% line and branch test coverage should be
maintained, at every commit (on the master branch or a release branch;
temporary failing tests or lack of coverage on a feature branch is acceptable,
but the branch should meet these standards before it is merged.)

To check coverage, run bin/test and load htmlcov/index.html in your
browser.

Test methods should set up preconditions for a single action, take that action,
and check the results of that single action (generally, separate these three
blocks in the test method with blank lines). Multiple asserts in a single test
method are acceptable only if they are checking multiple aspects of the result
of a single action (even in that case, multiple test methods may be better
unless the aspects are closely related). Avoid multi-step tests; they should be
broken into separate tests.

Avoid importing the code under test at module level in the test file; instead,
import it in helper methods that are called by the tests that use it. This
ensures that even broken imports cause only the affected tests to fail, rather
than the entire test module.

Prefer helper methods to TestCase.setUp for anything beyond the most basic
setup (e.g. creating a user for authenticated-view tests); this keeps the setup
more explicit in the test, and avoids doing unnecessary setup if not all test
methods require exactly the same setup.

Never use external data fixtures for test data; use the object factories in
tests.factories (available as self.F on every
tests.cases.DBTestCase.) If a large amount of interconnected data is
needed, write helper methods. External data fixtures introduce unnecessary
dependencies between tests and are difficult to maintain.

Style

A consistent coding style helps make code easier to read and maintain. Many of
these rules are a matter of preference and an alternate choice would serve
equally well, but follow them anyway for the sake of consistency within this
codebase.

If in doubt, follow PEP 8 [http://www.python.org/dev/peps/pep-0008], Python’s own style guide.

Line length

Limit all lines to a maximum of 79 characters.

Docstrings

Follow PEP 257 [http://www.python.org/dev/peps/pep-0257]. Every module, class, and method should have a
docstring. Every docstring should begin with a single concise summary line
(that fits within the 79-character limit). If the summary line is the entire
docstring, format it like this:

def get_lib_dir():
 """Return the lib directory path."""

If there are additional explanatory paragraphs, place both the opening and
closing triple-quotes on their own lines. Separate paragraphs with blank lines,
and add an additional blank line before the closing triple quote:

def get_lib_dir():
 """
 Return the lib directory path.

 Checks the ``LIB_DIR`` environment variable and the ``lib-dir`` config
 file option before falling back to the default.

 """

Docstrings should be formatted using reStructuredText [http://docutils.sourceforge.net/rst.html]. This means that
literals should be enclosed in double backticks, and literal blocks indented
and opened with a double colon.

Always use triple double-quotes for enclosing docstrings.

Imports

Outside of test code, prefer module-level imports to imports within a function
or method. If the latter are necessary to avoid circular imports, consider
reorganizing the dependency hierarchy of the modules involved to avoid the
circular dependency.

Module-level imports should all occur at the top of the module, prior to any
other code in the module. The following types of imports should appear in the
following order (omitted if not present), each group of imports separated from
the next by a single blank line:

		Python standard library imports.

		Django core imports.

		Django contrib imports.

		Other third-party module imports.

		Imports from other modules in MozTrap.

Within each group, order imports alphabetically.

For imports from within MozTrap, use explicit relative imports for imports
from the same package or the parent package (i.e. where the explicit
relative import path begins with one or two dots). For more distant
imports, it’s usually more readable to give the full absolute path. Thus,
for code in moztrap.view.manage.runs.views, you could do from .forms
import AddRunForm and from ..cases.forms import AddCaseForm, but it’s
probably better to do from moztrap.view.lists import decorators rather
than fromlists import decorators; more than two dots become
difficult to distinguish visually.

Never use implicit relative imports; if an import does not begin with a dot, it
should be a top-level module. In other words, if models.py is a sibling
module, always from . import models, never just import models.

Whitespace

Use four-space indents. No tabs.

Strip all trailing whitespace. Configure your editor to show trailing
whitespace, or automatically strip it on save. git diff --check will also
warn about trailing whitespace.

Empty lines consisting of only whitespace are also considered “trailing
whitespace”. Empty lines should not be “indented” with trailing whitespace to
match surrounding code indentation.

Separate classes and module-level functions with three blank lines. Separate
class methods with two blank lines. Single blank lines may be used within
functions and methods to logically group lines of code.

Line continuations

Never use backslash line continuations, use Python’s implicit line
continuations within brackets/braces/parentheses. If necessary, prefer
extraneous grouping parentheses to a backslash continuation.

All indents should be exactly four spaces.

The first place to wrap a long line is immediately after the first opening
parenthesis, brace or bracket:

foo.some_long_method_name(
 arg_one, arg_two, arg_three, keyword="arg")

my_dict = {
 "foo": "bar", "boo": "baz"}

my_list_comprehension = [
 x[0] for x in my_list_of_tuples]

If the second line is still too long, each element/argument should be placed on
its own line. All lines should include a trailing comma, and the closing
brace/paren should go on its own line. (This allows easy rearrangement or
addition/removal of items with full-line cut/paste). For example:

foo.some_long_method_name(
 foo=foo_arg,
 bar=bar_arg,
 baz=baz_arg,
 something_else="foo",
)

my_dict = {
 "foo": "bar",
 "boo": "baz",
 "something else": "foo",
 }

my_list_comprehension = [
 x[0] for x in my_list_of_tuples
 if x[1] is not None
]

One exception to the four-space indents rule is when a line continuation occurs
in an if test or another block-opening clause. In this case, indent the
hanging lines eight spaces to avoid visual confusion between the line
continuations and the start of the code block:

if (something and
 something_else and
 something_else_again):
 do_something()

Comments

Code comments should not be used excessively; they require maintenance just as
code (an out-of-date comment is often far worse than no comment at
all). Comments should add information or context or rationale to the code, not
simply restate what the code is doing.

The need for a comment sometimes indicates code that is overly clever or doing
something unexpected. Consider whether the code should be expanded for clarity,
or the API improved so the behavior is less surprising, before adding a
comment.

Use @@@ in a comment to mark code that requires future attention. This
marker should always appear with explanation of why more attention is needed,
or what is missing from the current code.

Quotes

Always use double-quotes for quoting string literals, unless the quoted string
must contain a double-quote character. Quoting such a string with single quotes
is preferable to using backslash escapes in the string.

Javascript

Javascript code should pass JSLint [http://www.jslint.com].

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_images/edit_icon.png
di=R

_images/filter_quick.png
MANAGE TEST CASES

Enter filter terms

Advanced Filtering »

[o

Name [Tags]

_static/down.png

_static/comment.png

_images/controls_clone.png
Firefox OS v1.0

_static/ajax-loader.gif

_images/filter_link.png
MANAGE TEST CAsEs
. [Emerﬁumerms ‘ Advanced Filtering »]

o

_static/file.png

_static/down-pressed.png

_images/product_version.png
Product Version *

Firefox OS v1.0

_images/126x126.png

_images/126x1261.png

_static/comment-bright.png

_images/controls_edit.png
Firefox OS v1.0

_images/add_element.png
add an element (‘enter' to submit)

_images/filter_advanced_field.png
MANAGE TEST CASES

Dextended product

test] [« Advanced Filtering

STATUS) NAME ™G PRODUCT

Odratt add id filter ‘ add name filter | DOregistration

DOactive DOkey DOFirefox

Dldisabled DOImuck DFirefox 05
Dlspeck DOlMassive
Olb2g OMozTrap

[OTEF Test 6

CREATOR ENVIRONMENT SUITE

DOcamd ELEMENT DlAccounts

Dltester Oichrome [D8ig Suite:

Dlcreator Dlenglish [D)Cloned: Big Sute:

Mranacer [Y6dfds FooFlement i~ [tiny bia suite

_images/case_result.png
12 %¢ rarLep w

_images/controls_expand.png
Firefox OS v1.0

_images/controls_env.png
Firefox OS v1.0

_images/manage_products.png
® Run Tests 4 View Results Manage

Tags Environments Versions

_images/run_controls_refresh.png
o@

Alpha 1

_static/up.png

_images/controls_delete.png
Firefox OS v1.0

_static/plus.png

_images/filter_advanced.png
MANAGE TEST cAsEs
. [Emerﬁumerms ‘ Advanced Filtering »]

e ...

_images/filter_pinned.png
MANAGE TEST cAsEs
. [Emerﬁumerms ‘ Advanced Filtering »]

[+ Moty ¢

_images/add_category.png
+ appAcaeGory @

